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ABSTRACT

With the objective to contribute to the application of model building
srocedure to an economic time series of Myanmar, stochastic models for
some monthly transport time series of Myanmar are found by using Box-
Jenkins model building approach. Basic statistical characterstics for our
transport time series are first investigated and statistical test for seasonality 1s
applied to each series to confirm the existence of seasonality. The traditional
methods of seasonal measurement and stochastic seasonal models with ther
haracteristios are also investigated. Suitable stochastic models for our
monthly transport time series of Myanmar are found by following the three
ctages of model building, némely, identification, estimation and diagnostic
checking. Whenever needed, computer programs for the systematic
ievelopment of the model building procedure are developed. 1t 1s found that
+21 IMA and SMA models are suitable for our series. They are fitted to the

series differenced by year or differenced by month as well as year.




INTRODUCTION

One of the essential things in the development of a country is an
cxeellent treamportation system.  The State Law and Order Restoration
Council (SLORC) endeavoured (o Lift the standard of soctal, economic and
~altural conditions of Myanmar by improving the transportalion system.

In fact, ransport plays a vital role in a nation 's economic, social and
~urtural development as well as national defense and national unity. That 18
why, SLORC is giving priority to the safty and smoothness of transportation
=< one of its four main taskss.

It is necessary to study the situation of transportation in the country
which is fundamental to the social, economic and cultural development.
Urways, Railways, Inland Water Tramsport and Road Transport are
mportant components of the state 's transportation. In this thesis, some
onthly time series of Airways, Railways and Inland Water Transport are
mvestigated. |

The monthly transport data are normally recorded in two ways, freight
5 or freight ton and number of passengers. For road transport, we get yearly
Zata of the states and divisions and monthly data of only Yangon city. We
_annot get monthly data for the whole country. So, we omit the road
sansport data to investigate in this thesis. The monthly transport time series
»f Airways, Railways and Inland Water Transport are collected for 7 years
fom 1989 to 19935). The data are obtained from Central Statistical

Jrganization (C. 8. 0.). We choose some monthly transport time series such



as Airways(freight 1b), Airways (number of passengers), Railways (freight
ton) and [nland Water Trasnsport (freight ton) series to study in this thesis.

The transportation system ol a country is usually comprised of
transportation by airways, railways, water transport and road transport.
Passengers and cargoes are carried from place to place by such trangport. In
Myanmar, the Ministry of Railway Transportation is in charge of Railways,
and the Ministry of Transport is in charge of Airways and Inland Water
Trané:port.

The number of passengers, freight b and freight ton are shown in the

ollowing table.

( In Million )
= - — =
Series 1987-88 & 1994-95
Airways (Fraght Ib) 2.97 3
“Airways (Number of passengers) 441 626
Raitways (Freight ton) 1764 3297
_Raﬂways (Number of passengers) 60859 | 33362
1 1
Inland Water Transport (Freight ton) 2368 3194
Inland Water Transport (Number of passengers) 17892 26582, J
i ——,— el s e i

Qource: Review of the Financial, Economic and Social Conditions
( 1991-92, 1996-97 )
The above table shows considerable increase except in Airways (freight
Ib) and decrease in Railways (number of passengers) between 19K7-88 and
1994-95. Thal is. there is only 1% increase in Airways ([reight 1b), 41.95 %
increase in Airways (number of passenger), 86.90 % increase in Railways

i freight ton), 12.32% decrease in Railways number of passengers), 34.88 %



increase in Inland Water Transport (freight ton) and 48.57% increase I
Inland Water Transport (number of passengers).
The objective of this thesis is to find suitable stochastic models for the
monthly transport time series consisting of Airways, Railways, Inland Water
Transport series and in so doing to investigate the model building procedure
suggesied by Box and Jenkins (1976). There exists traditional methods of
amalysing a monthly time series and these will also be discussed mn this thesis,
smoothing method and use of dummy variable method  will also be
cesented 1 order Lo have a more or less complete coverage of al possible
cthods of analyss
In chapter 1, basic statistival charadenstios of the tune senes  and
<easionality of these series are investigated. In chapter I1, traditional methods
¢ seasonal measurement are discussed.  Stochastic seasonal models for
— mthly time series are presented in chapter IIL Chapter IV gives a
‘e<cription of the stochastic model building procedure.  Model building
~-ocedures and accepted stochastic models for the monthly transport time
omes under investigation are discussed in chapter V. Model building
ocedures of the analyzed transport tme series, their himiiations, results,
mments and suggestions for further research are summarized in the

_onclusion



CHAPTER 1

MONTHLY TRANSPORT TIME SERIES OF MYANMAR

1.1 Introduction

‘Monthly time series over the years display variations over the months
< well as variations over the years. Graph of a monthly time scries shows
‘ese variations in detail. Monthly transpost time series of Myanmar. for the
wears 1989 to 1995 are shown in Tables Al.1 to Al.4 of Appendix A and
Graphs B1.1 to B1.4 of Appendix B. Distinct seasonal variations of Atrways

“eightlb), Airways (number of passengers), Railways (freight ton) and
“~land Water Transport (freight ton) monthly time series can be discerned m
‘= graphs. Seasonality in a time series can best be discerned in a tier chart.
Graphs B1.5 to B1.8 show tier charts for each of transport time gertes of
\fvanmar. They show that the patterns of varation over the months are
=—:lar for most of the seven years.

In this chapter, basic statistical cliaracteristics of some of transport time
weries of Myanmar will first be investigated. Statistical tests for scasonality
=11 also be applied to each series to confirm the existence of scasonality.

1.2 Basic Statistical Characteristics
In this section, some basic statistics of some t.fa'nsp(ni time series are

sresented in order to be able to sec their sigmificant vanations in a
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mnﬂucd form. The statistical measures used are the mean, the variance,
coeifoent of vanation, maximumand munimum. These values are calculated
from the monthly series for each month (January to December) over a
mumber of years and for each year over a number of months,

To calculate these values, we define yy as the value of the random

variable y during i month of i* year and compute,

- 1.& . :
y';.::'fly;j ;1’_1,2,..., /
k <
S
= the mean value fori" year
=Sy, ii=L2..., 12
Yp= 2 Yg 3]T ke ew, la
i
= the mean value for " month
£ T2 U TN
Vi: """" Z(,‘;\j“yi.) ;1*1351-—”7
k- 157
= the variance for i" year
Ve -5 =12, 12
j if RIS - A, Ly 0. “
n— 155 !
. o -th
= the variance for ]I month
_ dE
C.V(@i)= Y100
ey

_ O ST SR
= the coefficient of varnation for 1" year



fre e

\/\Vi

Y.

= the coefficient of variation forj" month

These values enable us to compare the statistical characteristics from month

to month and from year to year.

1.2.1 Airways (Freight Lb) Series

The monthly data of Awrways (freight 1b) series are collected for 7
vears, from 1989 to 1995 and presented i Table Al.1 of Appendix A. Basic
statistical characteristics of this series are nvestigated from two aspects.
“urstly, the basie statistics for each month over a number of vears (7 vears)
zre computed. This enable us to sce the pattern clearlv from January to
December throughout the year of the means and vanances. Seccondly, the
basic statistics for each year over a number of months (12 months) are
computed. The pattern over the years of the means and varnancescan be seen
clearly from these.

Some basic statistics of the Airways (freight 1b) series are computed

for each month and presented in Table 1.1(a).



Table 1.1(a)
Basic Statistical Characteristics For Each Month : Airways (Freight Lb)

" Month T " Mean "_'{'—_\ﬁrﬁﬁ& T ov. T [ Maximum Minimum |

ll (Thousand 1b) | (Thousand lb) l g‘ﬂousand) (Thousmld)

Ty 01 755867 | 723641 B 426 175

| February 377 00 49656.57 59.11 \ 744 171

| March 566.00 69926.57 4502 984 200

| April 519.00 50431.43 4327 791 N 185

!. May 276.86" 13882.98 42.56 528 155

| June 300.14 22296.12 49.75 568 118
July 262.86 12184.98 41.99 523 166
August 205.29 1607.06 19.53 | 260 135
September 255.14 6092.98 30.59 423 157
October ‘ 245.57 7 1821.96 \ 17.38 21 192
November 425.14 82464 40 \ 61.55 \ 899 225

Lp_e;(icmber 1 44371 [ B 430254 06 _i 46.75 B 885 | 248

From Table 1.1(a), it can be seen that the monthly mean values vary
from month to month for this series. For instance. January and May to
October have the means which are less than the overall mean 334.38
(thousand Ib).  The monthly mean is highest in March with 566.00
(thousand 1b) and the lowest in August with 205.29 (thousand 1b).
Therefore, the highest which occurs in March is about 2.5 times the lowest
mean which ocours in August. The variances for each of the months vary
from 160766 (thousand 1b)? to 82464.40 (thouqand b)? and the coefficient
of variations vary from 17.38 percent to 67.55 percent. The coefticient of
variations for November ‘s found to be largest ( 67.55%), a fact which
indicates that the monthly data over the years for November ditfers (o a

certain extent. The maximum value for cach month is the lowest i August




i the highest in March, The minimum value for each month is the lowest
i June and the highest in December. When the mean value for the month 1s
large, the maximum value and the minimum value of the series are also large.
Por the whole observed records, the minimum value of Airways (freight Ib)
ceries 15 118 (thousand 1b), which occurs in June, 1989.  Similarly, the
maximum value 1s 399 (thousand 1b) which oceurs m  March, 1993,
Iherefore, during the observed period, the maximum value of this series 18
about & time that of the minimun value.

The yearly mean value, the variance, the coefficient of variations,

maximum and minimum over the twelve months for each year from 1989 to

1995 of Airways (freight 1b) series are presented in Tuble 1.1 (b).
Table 1.1(b)
Rasic Statistical Characteristics For Each Year ; Airways (Freight Lb)
" Year Mean Vanance C.V. Maximum Mmimumn
(Thousand) | (Thous and)? (Thousand) | (Thousand)
1989 | 312.08 53157.08 7388 | 858 118
1990 412.83 59806.14 59.24 899 171
1991 26475 15488.52 47.01 568 162
1992 331.25 39406.85 993 | 79 157
1993 41592 61120.24 59.44 984 212
1994 366.50 29930.08 47.20 791 196
1995 | 307.33 19813.06 45.80 655 182

From Table 1.1(b), it can be seen that the yearly means vary from

312.08 (thousand 1b) in 1989 to 415.92 (thousand 1b) in 1993. The variance
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is large in each year and the yearly coefficient of variations fluctuate around
33 percent. The maximum value is about 3.5 to 7 times of minimum value

for each year.

1.2.2 Airways (Number of Passengers) Series

The monthly data of Airways (number of passengers) series  are
collected for 7 years, from 1989 to 1995 and presented in Table A1.2 of
Appendix A. Basic statistical characteristios of this series are computed in the
same way as in Airways (freight 1b) series.

For each month these statistical characteristics are computed and

presented m Table 1.2(a).

Table 1.2¢a)

Busic Statistical Chiaracteristics For Each Month @ Alrways {(Numeher of Passenger)

" Month | Mean | Varace | Cv. | Maximum | Minimum
| (Thousand) | (Thousandy* | | (Thousand) | (Thousand)

| January 41.14 109.55 16.32 62 27
February | 3943 88.82 I 15.02 56 24
March 46.14 104.69 15.06 61 28
April 4271 170.20 19.96 59 22
May 41.86 39.84 14.65 56 28
June | 31.57 62.24 14.04 46 22
July 3229 | 77 .06 15.45 48 21

| August | 3314 6098 | 13.56 47 21

| September 3420 | 62.20 1367 | 47 24

| Qctober | 38.57 87 .96 15.10 53 26
November 43.00 114.28 16.30 56 28

| Deember | aL7L | 14935 ] 1892 2 31

From Table 1.2(a), it can be seen that the monthly mean values vary



-
/

om 31.57 (thousand) to 46.14 (thousand). The months June to October.
Lave a smaller mean value than the overall mean value of 38.82 (thousand).
‘une has the lowest mean value and March has the highest. The variances tor
cach of the months vary from 60.98 (thousa.nd)2 to 170.20 (thousand)™.
Variance for August is lowest whereas variance for April is the highest. The
ocfficient of variations lie between 13.56 percent and 19.96 percent. The
largest coefficient of variations is found to be in April and the smallest in
August. In this series. low valuesof the monthly mean from June to October
is due to the rainy season since these months are very wel and rainy in
Myanmar. For the whole sertes, the minimum value 1s 21 in July and August,
1989 and the maximum value is 62 n January, 1995. Therefore, the
meaximum value of the Airways (number of passengers) series 18 about 3
imes that of the minimum value during the period of January. 1989 to
December, 1995.

Some basic statistics for cach year from 1989 to 1995 of Airways
number of passengers) series are also computed and presented in Table
i 2(b).

Table 1.2(b)

Basic Statistical Characteristics For Each YVear @ Adrways (Number of I"assenger)

Year Mean Variance C.V. M axpnum Minimum
- (Thousand) (Thousand)z (Thousand) | (Thousand)
1989 | 2575 10.02 12.29 31 21
L1990 32.75 28.19 16.21 39 23
1991 | 34.25 64.02 23.36 48 22
1992 | 35.00 200 | 1340 k! 30
993 | 4125 | 4319 ] 15.93 51 A
1994 | 48.67 \ 60.22 15.95 59 | 33 1
wos | s | wa | wow | @ | s |



3

From Table 1.2(b). it can be seen that the vearly means vary from

25 75 (thousand) in 1989 to 54,08 (thousand) in 1995. The variance of each

vear varies from 10.02 (thousand)2 to 64.02 (thousa.nd)2 and coetficient of

variation for each year lies between 10.20 percent and 23.36 percent.

1.2.3 Railways (Freight Ton) Series

The monthly data of Railways (freigh ton) series are collected for 7

vears, from 1989 to 1995 and presented in Table A1.3 of Appendix A. Basic

<atistical characieristics of this series arc computed in the same way as in

Aqrways series.

For each month these basic statistical characteristics are computed and

oresented in Table 1.3(a).

3asic Statestical Characteristics For Each Month

December J 209.80

Stomh | Memn
(Thousand Ton)
oy || 212.86
Febriary 201.57
Warch 212.29
Apnl 17543
May 179.86
Jume 171.00
Tl ' 168.71
August - 167.43
September 160.43
Jctober 175.29
Govember | 194.86

|

Table 1.3(a)

Variance
{Thous andTon)*

609.55
406.24
655.35
578.53
564.98
446.57
540.49
$33.96
1169.10
1101.35
1967.27
1487.55

: Raitways (Freight Ton)

C.V. Maximum  Minimum
(Thousand Ton) | (Thousand Ton)

_'Pifo 249 165
| 10.00 231 169
| 12.06 260 175
l 13.71 209 131
13.22 212 146
12.36 196 131
| 13.78 199 125
17.25 210 121
21.31 207 107
18.93 214 123
22.85 276 127
18.38 285 171

oo e s




“rom Table 1.3(a), it can be seen that the monthly mean values vary
—om 16043 (thousand ton) to 212.86 (thousand ton). The months, April to
wiober, have a smaller mean value than the overall mean value of 185.74
=ousand ton). September has the lowest mean value and January has the

~shest. The variance of each  month varies from 446.57 (thousand ton )

. 124727 (thousand ton)’. Variance for February is the lowest whereas

~ance for November is the highest. The coefficient of variations for each

lies between 10.00 percent and 22.85 percent. The largest coetficient

41

< vanations is found to be in November and the smallest in February. In
.« series, the monthly mean decreases from June to October, then increases

~ November to highest in January. The low mean values from June to

“wrober is due to the rainy season since these months are very wet and ramy

~ “ivanmar. The maximum value for each month 1s the smallest in June and

.« mighest in December. Also, the minimum value for each month is the

in September and the largest in March. For the whole series, the

Wl

——um value is 107 in September, 1989 and the maximum values 1s 285

= December, 1994, Therefore, the maximum value of the Railways (freight
series is about 2.7 times that of the minimum value during the period of
1989 to December, 1995,

Some basic statistics for each year from 1989 to 1995 of Railways

~oht ion) series are also computed and presented in Table 1.3(b).
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Table 1.3(b)
Pasic Statistical Characteristics For Each Year : Railways (Freight Ton)
Year Mean Variance | C. V. Maximum Minimum
N (Thousand Ton) | (Thousand Ton)* (Thousand Ton) | (Thousand Ton)
1989 141.42 530.38 16.29 177 107
1990 162.33 634.06 15.51 208 124
1991 179.00 440.67 11.73 204 141
1992 185.42 368.74 10.36 220 147
1993 204.58 517.74 11.14 260 175
1994 224.00 864.33 13.12 285 181
1995 203.42 374.24 9.51 249 182

From Table 1.3(b), it can be seen that the yearly mean value of each

vear varies from 141.42 (thousand ton) to 224.00 (thousand ton). The
—ariance for each year varies from 368.74 (thousand ton)* to 864.33
(thousand ton)? and coefficient of variation lies between 9.51 percent and

16.29 percent.

12 4 Inland Water Transport (Freight Ton) Series

The monthly data of Inland Water Transport (freight ton) series arc
collected for 7 years, from 1989 to 1995 and presented in Table Al.4 of
Appendix A. Basic statistical characteristics of this series are computed in the
' same way as in Airways and Railways series.
For each month, these basic statistical characteristics are computed and

presented in Table 1.4(a).
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Table 1.4(a)

Basic Statistical Characteristies For Each Month : Inland Water Transport (Freight Ton)

“Monuth Mca;n 1 Vur-i_unce I V. Maxamunm I Minimum
(Thousand Ton) | (Thousand Ton)* (Thousand Ton) | (Thousand Ton)
January 245.57 1012.82 | 12.96 289 194
February 230.57 1068.53 14.18 270 170
March 265.29 1494.78 14.57 308 198
April W | U 13.94 m | s
May 24500 1161.71 1391 287 190
June 233,43 1065.10 13.98 280 180
Tuly 234,43 723.10 11.47 275 200
August 22829 179.63 5.87 250 210
September 215.86 230.69 7.76 236 190
October 228.29 817.63 12.53 260 181
November 22943 696.82 11.51 264 187
Peoember 239.00 @171 | 11.00 269 191
e 1 [ D SR R |

From Table 1.4(a), it can be seen that the monthly mean values vary
1‘1'01ﬁ 215.86 (thousand ton) to 265.29 (thousand ton). The monthly mean
values vary do not much from month to month in this series. The variance
for each month varies from 179.63 (thousand ton)* to 1494.78 thousand
zon)jz. The coefficient of variations for each month lies between 5.87 percent
and 14.57 percent. The largest coetficient of variations is found to be m
“iarch and the smallest in August. The minimum value is the smallest in
February and the largest in August. For the whole series, the minimum value
1£ 170 (th;uszmd ton) in February, 1989 and the maximum is 308 (thousand
ton) in March, 1993. Therefore, the maximum value of the Inland Water
wansport (freight ton) series 1s about 1.8 times that of the minimum value

during the period of January, 1989 to December, 1995.
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Some basic statistics for each year from 1989 to 1995 of Inland Water

Transport(freight ton) series are also computed and presented in Table

1 4(b).

Table 1.4(b)

Basic Statistical Characteristics For Each Year : Infand Water Transport {(Freight Ton)

Year ~ Meun Vanance C.V. Maximum Minmmum
(Thousand Ton) | (Thousand Ton)* (Thousand Ton) | (Thousand Ton)
1089 19950 284.75 8.46 233 170
1990 213.00 487.33 10.36 261 181
1991 213.68 74.41 4.04 228 201
1992 237.50 177.42 5.61 267 217
1993 263.83 477.64 8.02 308 226
1994 263.92 368.58 7.2 292 232
1995 264.58 451.58 8.03 306 236

From Table 1.4(b), it can be seen that the yearly mean value varies

som 199.50 (thousand ton) to 264.58 (thousand tomn). The variance for each

year varies from 74.41 (thousand ton)’ to 487.33 (thousand ton)? and

coefficient of variation lies between 4.04 percent and 10.36 percent.

1.3 Test of Seasonality

The following model for the randomized complete block design
(Daniel, W. W. and Terrell, T. C., 1992) will be used in testing seasonality in

our monthly transport time series.

Vi =P +Y; ey

- 1<i<n, 1<j<k

where y; is a typical value from the overall population,

w is an known constant,
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B, represents a vearly etfect, retlecting the fact that the experimental
unit fell in the i year,

v, represents a monthly effect, reflecting the fact that the experimental
unit received the ™ month and

¢; is a residual component representing all sources of vanation other
than months and vears.

We make three assumptions when we use the randomized complete
block design. (a) Each observed yj constitutes an independent random
varable of size 1 from one of the kn populations represented. (b) Each of
these kn populations is normally distributed with mean p; and the same
variance ¢° . The e; are independently and normally distributed with mean 0
and variance o° . (¢) The block and treatment effects are additive. To state
this assumption another way, we say that there is no interaction between
months and years.

In general, we test

Hoi by = Mg = W= ... 7 Py Versus

H,: at least one equality does not hold.
In other words, we test the mull hypothesis that the monthly means arc all
equal or equivalently, that there are no differences in monthly effects.

To analyze the data the needed quantities are the total sum of squares
SST, the sum of squares for months SSM, the sum of squares tor years SSY
and the error sum of squares SSE. When these sum of squares are divided

by the appropriate degree of freedom, we have the mean squares necessary
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for computing the F statistic. For our monthly transport data k=12 months

and n=7 years, the degrees of freedom are computed as follows:

Total Months Years Error
(kn-1) = (k-1) + (1) + @Dk

where k=12, n=7.
We find the error degrees of freedom, like the error sum of ssqures,

by subtraction:

(kn-1) - (k-1) - (n-1) = kn-1-k+1-n+1
=kn-k-n+1
=k(n-1) - (n-1)
= (k-1)(n-1)

Short-cut formulas for computing the required sum of squares are as

follows:
k ’yz_ n
ssM=3% ¢ oy =Ty,
1 1 i=1
n,y_z k
SSY = Zf_c N :ZyU
=1 =1
n k ,
SST =Y Yyl -cC

-SSE = 88T - (SSM + S8SB )

2

. n k
where C= )r:_k : yM:ZZyij
i=]l )=}

e,
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We can display the results of the calculations for the randomized

somplete block design in an analysis of variance (ANOVA) Table.

ANOVA Table for a Two-Way Analysis of Variance

Source S. 8. D.F. M. 8. || F-Ratio |q
|- e e} : |
Between Months | SSM k-1 MSM=SSM/k-1 ‘ b, =MSM/MSE

‘ |

Between Years SSY n-1 MSY=SSY/n-1 | F;=MSY/MSE |
| |

Error SSE | (n-1)(k-1) 1MSE=SSE/(n-1)(k'-1) \ |]
‘ — ] =

Total 1 SST kn-1 5 ‘

We compare the computed ratios I and F, with the ontical values

K, =Fo . b, @i and Ko = Fao, @1,

(a1 » respectively. If this ratios are

equal to or exceed the critical values, we reject the null hypothesis.

The ANOVA Tables for our four monthly transport time series are
shown in Table Al.5 to Al.8 of Appendix A.

Table 1.5

Mean Sum of Squares, F-Ratio, Critical Value and Decision For Each Series

F-Ratio ; K =Foos1166 | | Decision

1

N. Series N MSM |
| |
: e L
1. | Airways (freight 1b) 1 180989.3 S.4 li 1.958 !1 ject Tle |
2. | Airways (number of passengers) ‘ 2717.5 13.3 ‘ 1.95 ‘ reject Hy |
|
| Railways (freight ton) ‘ 4755.6 19.3 li 1.95 1 reject Ha
4. | Inland Water Transport (freight ton) l 1982.5 8.4 \ 1.95 |1 reject Ha

Table 1.5 shows the Mean Sum of Squares for months (MSM),

F-Ratio, Critical value K, and the Decision for each series. All the series are
" :




Al
10

found to be subject to variations from month to month. The ANOVA tables
shown 1n Appendix A also show that yearly means are different in the
population except for Airways (ireight Ib) series. Thus, the series are found
to be subject to variations from year to year except for Amrways (freight Ib)

series.



CHAPTER 11

SEASONALITY IN A TIME SERIES

2.1 Introduction

A time series is a series of values of a variable at successive pouts in
time or for successive intervals of time. The reason tor analysmg a tunc
series is that the past behaviour of a time series may tell the mmvestigator
something about the future and hence forecasts can be made.

In classical approach, a ime series 18 assumed to be composed of four
components. These components arc trend, cyclical, scasonal and random
components. A trend refers to a smooth upward or downward movement
of a time series over a long period of time. A periodic movement with a
period of not more than a year is known as seasonal varation.  Scasonal
variations are cycles that complete themselves within the period ol a calender
year and then continue to repeat the same basic pattern. A pertodic
movement which has a longer duration than one vear 1s known as cyelied]
variation. [t refers to the long - term osscillations about a trend line or curve.
A movement which is caused by unforeseeable and uncontrollable forees 1=
known ag a random varnation.

Many time series, such as the monthly or quarterly series have an
important seasonal component. Thus, 1t 1s important to separate the seasonal

and trend components so that the overall descasonalized scriex can be
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discerned and the magnitude and pattern of scasonal variation better be
understood.

‘In this chapter, basic types of time senes and Kinds of seasonal pattern
will be presented. Some methods of scasonal measurcment based on the two
hasic models will be investigated.  The methods discnssed will nelnde the
well known methods of Ratio to Moving Averages, Link Relatives, the
widely uged B. 1. §. and Census Mark I methods. The Regression methods,
although it is not used much will also be presented. All these methods have
been _dcvclopcd by various authors for the purposc of finding the scasonal

ndexes 1o Tepresent seasonality mn a lime series.

2.2 Basic Types of Time Series Model

! According to the way a time series 1 constructed from the four
compoments, time series models are traditionaly differentiated.  Two basic
ime series models are additive and multiplicative models. The time series 18
constructed by adding the components (addiive model) or by multiplymg
them (multiplicative model). That is in additve model, the value of the
trend. (he ovele, the scasonal and random or irregular compuonenis are added.
In the multiplicative model, they are multipled and are traditionaly expressed
as percentages. [n a mixed model with a m ultiplicative seasonal but an
additive random component, the seasonal component is usually expressed as
a percentage of the trend. Thus, the two hasic models used for analyzing a
{1INC SCT1es e

Y= Ti+Ci+ 5+ R
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-.a‘niohl is called the additive model and
Y, = TlWCL SRy
I,
vhich is called the multiplicative model.  In these models, Y, 1s the time
series, Ty is the trend component, C; 1s the cyclical component, S; 1s the
seasonal component and R, is the random or nregular component;)
Sometimes the trend and oyclical components are considered together
(Kendall, 1973) and then the two models are
Vi =y st g
which is the additive model and
V= S €
which is (he multiplicative model. Other possible model 18
‘ Yy My Syt Sz o+ €t
which is the mixed model. In these models, y; is the time series, my is the
smooth component (trend and short term oscillation) of the time series, s, Sy
and sy are the seasonal components and e; 1s the error term. The mixed

model is of additive multiplicative type in which the components add and

multiply.

2.3 Nature of Seasonal Time Series

S A time series is periodic with period s when similarity in the series
securs after s basic time intervals. Basic time interval means one month in
monthly time series and the period 18 8= 12. It means one quarter in
quarterly time series and the period is s = 4. In some series, there can be
more than one period. Thus, in a weekly time series, there can be a period

of s =4 and a period of s = 12.



12

Monthly or quarterly time serics mav show seasonal effects within
years. Scasonality means a tendency to repeat a pattern of behaviour over a
seasonal period of one year. Seasonal series are characterized by a display
of strong seasonal correlation at the scasonal lag, that is, the lag
corresponding to the number of observations per seasonal period and
usually ai multiples of that lag,

Scasonal time series usually display time to time (for example, month
to month) changes over the years, showing also within year varations. It is
useful to understand the actural situation and is used for short ténn
planning. For example, if the data represent the daily sales of a large
restaurant, a considerable variation may be noticed depending on the day of
the week. Another example, the publisher of a monthly magazine, may be
concerned with monthly variations in  sales throughout the vear. The
restaurant owner 1s concerned with the day of the week that is mvolved.
The publisher of a monthly magazine is concerned with which month of the
vear 15 involved. The restaurant’ s week-end sales are usually  considerly
mgher than the other sales. The seasonal cycle for the restaurant is a week
znd the days of the week are seasons. For a monthly magazine publisher.
months are the seasons and a year is a seasonal cycle,

The seasonally adjusted time series shows the tendency or trend
of the time series and can be used for long term planning. Some seasonal
zdjustment procedures use seasonal indices to find seasonally adjusted time

enies. For short term planning, unadjusted time series is beiter to be

L

ssed than the adjusted time series. Seasonal models can hen be used

describe  a  seasonal times series and  hence  for forecasting.



1.4 Kinds of Weasonal Patterns
Steiner (1956) detined the tollowmng kinds of seasonal pattern usually

found 1n a time series,

{0y Clonstant Seasonal

fi s the simple kind of scasonal paltern. In this kind of seasonal
variation. the seasonal factor operate m precisely the same fashion year after
vear, With a constant s¢ asonal the generalized relationship i simply stated,
with one figure for cach segment (month or quarter) of the year. That 1s the
simple average statement of cac 1 seotion, usually an index number is us sed to
represent a constant ceasonal. Also i assumes that such portion of within
year variaiion as cmn be generalized does not systematically change. Thus, a
constant seasonal pattern means that msolar as a recurrent svstematic pattern

can be generalized tisunchanging i form.

(b) Gradually Changing Seasonad
i is also called as progressive seasonal.  Many series have changing
systematic seasonal pattern and these patterns may be of several types. In
one such types, the variations of the quarters or months get larger and larger
as ime progresses. Within the year the same ranking of quarters or months
Qeeurs, but the pattern is no longer constant among years. The amplitude of
casonal Tuctuations steadily increases. In this case, the change in amplitude
s itsell systematic and 1t can not be n;ncwnt;d by a single set of numbers, as
was done with the constand seasonal.
A different kind of eradually changing (or progressive) seasonal also

cviste, (n this type, the samce segments of the vear no longer bear the same
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relationship to each other over the period. The pattern of a year shifts in
terms of timimg in later years. There is a gradual progression m the patterns
ul’micccssiu: vears und such a seasonal 15 samd to be progressive with respect
(O timing,.

A seasonal pattern might systematically vary in amphtude and timing.
There are o multitude of forms which progressive seasonal variation might
take including cases in which both timing and amplitude change
progressively over time.
{£) Osscitlating Seasonal
This kind of seasonal 18 occasionally found 1 cconomic time series. In
this kind, amplitudes of scasonal variations showed marked variation m
amplitude at different levels of activity.  For example, the percentage
seasonal variation might appear to be more marked at high levels of activity

than low ones. A series affected by evelical variations nmught have such kind

of varintion, 1 shown by a seasonal index, it would be alternately rising and

(d) Abruptly Changing Seasonal

in some economic time series a scaaonal pattern may abrutply altered.
Over some period there 1y one seasonal pattern for part ot the period, and a
second different seasonal pattern therealler. Causes for such abrupt changes
are usually identifiable.  Treatment of such cases mvolves separate
determination of the kind and form of seasonal for each of the sub-pertods

mvolved.
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2.5 Traditional Methods of Measurement

Many time series have an important seasonal component and for such
series it 1s important to be able to separal-e out the seasonal and trend
componenis so that the overall deseasonalized trend can be discerned and the
magnitude and pattern of seasonal variation better understood. It 1s important
to know whether a falling value or rising value ot a time senies indicates the
real change in the long term movement or whether 1t is  just a temporary
change due to seasons. In other words, the seasonal effects m a time series
need to be examined. There are different reasons for wanting to examine
seasonal effects. Some of the reasons given by Kendall (1973) are

(a) to compare the variable under study at different pomts of the vear

in order to know the inter-year variation and to take action

correspondingly,

(b) to remove scasonal effects from the series mn order to study its

other components uncontaminated by the seasonal element and

(¢) to adjust the time series for seasonal effects.

Because these objectives are not the same, different methods of
seasonal determination may be needed to be used| There are many different
methods for computation of seasonal index. some of which are quite accurate
and some of which are only appropriate. The following methods will be
discussed 1in this section.

(1) Ratio to moving average method

(2) Link relatives method

(3) Census Mark 11 method

(4)B. L. S. seasonal factor method

(5) Regression method.



"These methods have been developed to meet different objectives
ol estimating seasonals and under the assumed models of the time
series. The seasonal pattern itself 1s mmportant in the application of
these methods since most of the methods assume that the seasonal
pattern 1s constant or stable. Of these methods, the Ratio to Moving
Average method and the Lmk Relatives method are simple and which

are the most widely uvsed.

Ratio to Moving Average Method
Under the assumptions of multiplicative model and constant seasonal
pattern, the tollowings are the steps for the computation of the seasonal index

by the Ratio to Moving Average method. (Stemer, 1956)

(DFind the twelve months centered moving averages. This i1s

equivalent o a moving average ol thirteen months with weights

1 (12
2

2220

»

By finding twelve months centered moving averages, we climinate the
seasonality, since the seasonal pattern is periodic with a pertod of
twelve months.  Also 1t will eliminate the random component or
irregular movements. Therefore, the centered twelve month moving

averages are the approximates of trend and cyclical components.

-
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(2) Compute the ratic to moving average values, that 1s, the original
data 1s divided by its appropriate moving average value. There, the
first and last six months may not be obtained.
By this step, the trend and cyolicél components are removed from the original
data and the ratios are the values due to seasonal and random components.

They are called specific seasonals. (Steiner, 1956)

(3) Compute the averages of these ratios referring to the same months.
These averages are the crude seasonal index values.
This step mvolves two different purposes . the elmination of the random
components and averaging the seasonal relatives referrmg o the same

months.

(4) Adjust the crude seasonal index.
In multiplicative model, the total seasonal index values have to be equal (o
twelve (or 1200 percent) for monthly series. Therefore, the crude seasonal

mndex 1s adjusted to get a total of twelve (or 1200 percent).

5) In order to get the deseasonalized series, the observed records have

to be divaded by the appropriate seasonal index value.

Link Relatives Method
The same assumptions as in ratio to moving average method have o

b¢ made to compute the seasonal index by the link relatives method. The



tollowings are the steps for the computation of the seasonal index by the link

relatives method. (Kendall , 1973 )

(1) Find the link relatives values.
This 1s to divide the current value by the previous values. Then, the first one
may not be obtained. These values show the relative changes of the

consecutive values.

(2) Find the averages of the link relatives values referring to the same
months.
These averages show the average changes m consecutive months withun the
whole period of twelve months.
(3) Compute the chamn relative values by assumumg that the chan
relative value of the first month 1s unity.
The chain relative value for the current month is the product of the chain
relative value of the previous month and the average of link relatives for the
current month. These chain relative values constitute seasonal pattern and

the trend within a year.

(4) Determine the trend component within the vear and adjust tor the
trend.
To determune the trend component within a year, the chamn relative value of
the first month 1s computed, that 1¢, the product of the chain value of the last

month and the average of the hink relatives for the first month is computed
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and the difference between the chain relative value and the sctting value unity
1s found. This difference 1s regarded as the trend for twelve months. By
dividing this value by twelve, the difference for a month is obtained. which
1s assumed to be the coefficient of lincar trend and denoted by A (delta), If
the delta 1s positive, there exists an upward trend and the respective trend
values (1-1)A, 1= 1, 2, .. ., 12 are subtracted from the corresponding chain
relative values. Smmilarly, if the delta 1s negative, there exists a downward
trend and the respective trend values (1-1)A[, 1= 1, 2, . .. .12 are added (o
the corresponding chain relative values.  After the adjustment, the

adjusted chain relative values are regarded as the crude seasonal index,

(5) Adjust the crude seasonal index.
The crude seasonal mdex 1s adjusted to get a total of twelve (or 1200

percent) and the seasonal index 1s obtamed.

(6) In order to get the deseasonalized senes, the observed records have

to be divided by the appropriate seasonal mdex value.

The Census Mark 1T Method

For a great many practical purpose where monthly or quarterly data
are involved, use may be made of a powerful program known as Census
Mark T devised by Shaskin for the U. 8. Bureau of Census. It is widely used
and notwithstanding its vulnerability on a few theoretical points seem to
work very well in practice.  Its purporse 1s to separate off the seasonal and

restdual variation, but it does not dissect the smooth component into trend



and short term oscillation. There are several versions which differ in minor
particulars, but basically the procedure for monthly data proposed by Kendall

(1973) 1s as follows.

| (1) An option is offered whether to adjust the series for number of
trading or working days. If it is adopted, all subsequent operations are

on the adjusted series.

(2)A moving average 1s taken. There arc a number of options 1n the
. 2 o)

extent and weighting of the average.

(3) This is divided into the series to give a first estimate of the
seasonal-plus-irregular component. End values are estimated. usually
- as the nearest value for the same month. Extreme values are replaced

by the mean of the two values for that month lying on either side of it.

(4) To decide the relative importance of seasonal and irregular
components, an analysis of variance is carried out between years,
between months and residual, If the variance between months 1s
significant, on an F-test as compared with the residual variance. there

is evidence of genuine seasonal effects.

(5) For any month the ratio of within-month to residual variance for

that month is allowed to decide among number of options what
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moving average shall be used to smooth the random-residual term. A

different average may be used for different months.

(6) In some cases the seasonal so determined is divided into the
primary series to get a preliminary deseasonalized series, and another
moving average taken to get a second estimate of the trend. The

seasonal factors are adjusted so as to sum to 12.

(7) These results provide estimates of the smooth component and of
a moving seasonal component. The residual is obtamed by
subtraction{or sometimes by dividing the pnimary series by smooth-

plus-seasonal component 1f the error 1s regarded as multiplicative).

(8) Various subsidiary statistics such as the error variance are

computed.

The B. L. S. Seasonal Factor Method

The B. L. 8. method for developing seasonal factors for economic time
series was mtroduced in 1960 by the staff of the Bureau of Labour Statistics, -
Department of Labour, United States. Since then, continued research in
seasonal factor methodology by the Bureau's staff has resulted in some
changes in the method, the latest version was introduced early in 1963.

The B. L. S. method attempts to separate an economic time series into
three constituent parts. Underlying movement or trend-cycle (T), annual

repetitive or seasonal (S) and random or irregular (I). The three
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conu‘)onenls, when multiply together, completely and exactly exhaust the
original observations. The process used to develop the consitituent parts 1s
an iterative one. each successive iteration {cycle) resulting in an mmproved
cstimate for cach of the components of the original series.  The method
volves four or seven ierations, depending on whether any origmal
sbservations are identified or introduced as extreme for a monthly tume
SEI1es.

If the test (fourth) iteration reveals no extreme value, and none are
introduced from earlier runs of the same series, then the trend-cycle, seasonal
and uregalar component of the third iteration are considered to be the final
::onu-,u_mmm of the original series. Seasonally adjusied values are computed
aucordingly.

It the test (fourth) iteralion reveals one or more exireme original
observations. each such observation 1s replaced by a substitute value which
is the product of its trend-cycle and seasonal components as developed in the
iest iteration.  The modified original series in which extreme observations
have been replaced is then processed in the regular maner, starting with a
centered 12-month moving average and continuing through three complete
sterations ((itth, sixth and seventh). These last three werations are designed to
remove the effects of the extreme origimal observations from the trend-cyele,
seasonzl and irregular components being developed. The trend-cycle and
seasonal components resulting from the seventh iteration are final.

To cummarize, the seven stages of the B. L. 8. procedure are:

[teration 1. Startingirend-cvele is a centered |2-month moving average of the

original observations.



Iteration 2. First modified trend-cycle is the 12-month average modified by a

set of 7-term parabolic weights applied to the irregulars of the preceding

cycle.

Iteration 3. Second modified trend-cycle is the preceding iteration trend-cycle
modified by a set of 7-term flat (uniform) weights app]ied to wrregulars of

preceding cycle.

Iteration 4. Test iteration trend-cycle is the preceding iteration trend-cycle
modified by central-zero, 7-term flat weights applied to iregulars of
preceding cycle. Seasonal factors are secured by applying a 5-term central-
zero weight pattern to seasonal-irregulars.  Extreme observations are

identified and replaced by values developed in the test iteration.

Iteration 5, 6, 7. Same as 1, 2, 3 except that any replacement value developed
i the fourth iteration, or introduced from prior runs, is used mstead of an
original values identified as "extreme”. The onginal extreme values are
restored for calculating the final uregular components and the seasonally
adjusted values.

Because the method requires a large volume of calculations, an
clectronic computer has to be used. The modifications mtreduced in 1963
required changes mn the computer program which reduced the length of the
series that could be handled. But, the Census Mark 1T method and the B. L. $.

seasonal factor method are quite lengthy and complicated.



The Regression Method
Let y; be the values of the onginal series for the i year and i month.
Let xj be the estimate of trend based o-n a centered 12-pomnt moving average.
Then the regressions supposed by Kendall (1973)
yij = aj * bjxij
are calculated for each of the 12 months. [f a = 0, a multiplicative model 1s
obtained. If b;=1, an additive model resulted.

Adjust the constants a and b to

12
' r B = T
ajTaj”a where a_l_i -Z a;
=1
) - - 12
bJ bJ b where b = 'ule
2=

The seasonally adjusted values are then given by

Yi= 2

bj

Yij (adjusted) = -

This model has the advantage that it copes with both addiive and
multiplicative effects. However, there are serious disadvantages which
would outweight the advantage tor many purposes. It requires the estimation
of 24 constants, and unless the number of years 1s substantial those estimates
are rather unrehiable. The constants a' and b' are estimated for the whole

series and make no allowance for rapid recent changes 1 seasonal pattern.



And consequently the estimators are troublesome to update.  The method has
not come mto general use.

The scasonal indexes were calculated by the approprate method and
these may be used to deseasonalize the original time series data. Removing
the seasonal effect provides a series thal may prove useful m analyzang
longer term movement in the series. The resulting series is sometimes used
instead of the smooth data to identify cyclical activity., Deseasonalized data
may be used for instance, to compare suuccessive time periods to wd 1n
determining whether a turning point in the current cycle has been reached.

Removal of seasonal fluctuation is accomplished by dividing the
original time series by the corresponding seasonal mndexes.  Under the

classical model this 1s expressed symbolically as,

. Actual { monthly or quarterly )data
Deseasonalized value = : MLk B
Seasonal Index

_ TxCx5xl,
5,
= TxCoxl,
Dividing actual data (Y,) by seasonal index removes the seasonal component
(S;) from the series, leaving only the trend (T)), cyclical (C)) and nregular
component (I;). Eliminating seasonal movement makes 1t simpler to 1dentily
the longer term oscillations.
Besides these traditional methods, [l_w seasonal can be measured by the
Box-Jenkins (1976) seasonal models which will be discussed m chapter [
Our monthly transport time series are fitted by usig Box-fenkins

models and will be presented i chapter V.




34

2.6 Use of Dummy Variables for Seasonal Adjustment

Many ot the models that have been suggested incorporate seasonal
variation in a deterministic way. For example, a seasonal time serics
might be modeled as a periodic function of a time plus a random
component. A seasonal series modeled as a pertodic function of time vy,

plus a random component ¢, 1s

e

y, = 2 (o cos At + Bysin Ajt)

W

and szi—’j,ﬁ,g:o.

This formulation was used by Hannan ( 1960 ). Alternatively, dummy
variables could be introduced to reflect additive effects associated with
particular months or quarters. Economic time series rarely exhibit these
kinds of deterministic seasonality. Rather, the pattern and intensity of
seasonal variation change as the time changes.

Johnston ( 1972 ) proposed that dummy variables also play an
important role in problems of scasonal adjustment. There is the
conventional and long - standing problem of deseasonalizing a given
quarterly or monthly time series. Suppose we have 4n quarterly
observations on z so that z, in 1s the value of z in the j*" quarter of the

™ year (1= 1,.. ., njl, 2.3, 4).
Let us define 4n x4 matrix D .

\w

1l
D e OO O =
—_— O OO = O
O OO = O O
O O = O O O
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n

This is a sample matrix for four dummy variables, defined by

D, = 1;if the observation relates to quarter1; 1= 1, 2. 3, 4.

= (: otherwise.

\

The regression of z on D 1s
z = Db +2% (2.6.1)

where b is the vector of least squares coetficients and z* 1s the vector of

residuals.

By ordinary least squares method, we have
b = (D'D)'D’z

and from equation (2.6.1), we get

z* =2z - Db
=z -D({DD)'Dz
= [I - D(D'D)"'D' ]z (2.6.2)
= Mz (2.6.3)

where M = [I = DMD'D)'D’] giving z* as a linear transformation

of z . Itis seen that M is symmetric idempotent ( that is. M’'= M,
M= M?=M’=...) with the property MD = 0.

The series z* cannot serve directly as a deseasonalized series for two
reasons. First of all, it sums to zero, whereas it would seem plausible to

require a deseasonalized series to have the same sum as the uncorrected.
original series. Secondly, it can be seen trom the nature ot Dthat

foxn
It
NONINY
w ~ —
1

1
N1
PN
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_fr:‘izﬁ ;3= 1, 2,3, 41s the mean of j"quarter z value. This
];

z* merely consists of deviations of the z values from the quarterly means.

L 1
where z; = -

If the original series contain trend and cyclical elements these will effect

the quarterly means and thus in turn the deseasonalized series.
Since z is composed of trend, cyclical component, scasonal

component and a disturbance. Thus, z is now regressed on an expanded

matrix | P D ] where P is an appropriate set of powers of time, that 1s,

~ |

1 12 1® .1 1000
2 2¢ 22 .. 2 0100
i 3 32 3% .. 3 0010
P D] =
(£ D] 4 4 4% . 4 0001
| 4n (4n)? (4n)* .. (4n)» 0001

Thus, the regression may be written as
z=Pa+Db+e (264)
and the deseasonalized series would now be defined as

z’=z - Db (26.5)

Jorgenson ( 1964 ) has argued that if the P and D malnces are
properly specified thena and b will be best linear unbiased estimates of
the systematic and seasonal components. Then, equation ( 2.6.4 ) can be

written as

z=[BD{§}+@

By ordinary least squares, the estimates of a and b are given as

a|_[PPPD [P
b| LDPDD ]| Dz
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Applying the results for the inverse of a partitioned matrix, we get
b = (D'ND)'DNz

where N = [ - P(P'P)"'P/.
By substituting the value of b in equation (2.6.5) gives

2’ =z-D(D'ND)"'D'Nz
=[I-DO'ND)'D'N ]z

where T=1-D(D'ND)"'D'N .

Thus, the deseasonalized series can be expressed as a linear
transformation of z. However, i contrast with the matrix M defined in
equation. (2.6.3),the T matrix is not symmetric ( that is, T'# T ), but
it 1s idempotent ( that is, T =T* = T° = .. .) and does satisfy the
condition TD=0 .

2.7 Use of Smoothing Methods

Winters ( 1960 ) has suggested an adaptive scheme for forecasting
seasonal time series in which both the level and the seasonal factor in each
time period are revised in accordance with a smoothing formula. 1 is
conceptually an extension of simple exponential smoothing having the
advantages of adaption but still lacking a basis in statistical theorey.

Consider a seasonal time series 7z with period s ( so that s = 4 for
quarterly series and s = 12 for monthly series ). The most commonly
employed variant of the Holt (1957) - Winters (1960) method regards the
seasonal factor F, as multiplicative ( while trend remains additive ).

Then I, 1s estimated as

Fl:D(Zt/zt)Jr(l_D)Ftb’ O\Dl (371)
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It is assumed that z >0 for all {. The z is estimated by

2o Az IF. (L= A) (7 + T (2.7.2)

‘ _ _ _ 10 A
The trend component is again estimated as

T~ C(za-z0)+(1-C)T, ;0<C<1  (273)

In order to employ equations ( 2.7.1), ( 2.7.2 ) and ( 2.7.3) it is necessary
to specify starting values. A very simple way to accomplish thus is to take
&

Fo=z/( ! Z Zk ) j=1,.2,3,....s,and T_=0.
j _ ~ :

The three updating equations are used recursively for t =s+1. s+2. ..., n.
Since trend is additive and seasonality is multiplicative, forecasts of future

values are given by

24 (L) = (Z + LTOFun s s L=1,2...,s
= (Zy + LT Fiyn-a2s ; L=1,2,...,2s
: (2.74)

The Holt - Winters approach can easily be modified to deal with the
seasonal factor which is additive. In this case, equations (2.7.1) and

(2.7.2) are replaced by

Fo=D(z-7)+(1=D)F, . 0-D<1
and 2= ‘A‘(Zt_Ft-s)+( 1I— A ,\Q‘t‘l + Tt-l) ) 0« A<l

The forecasting equation ( 2.7.4 ) is now replaced by
2l =70+ LT + Feinos =12, 8
7¢+ LTe + Fern-2s cL=1,2,.. 28




39

It remains only to choose the smoothing constants A, C and D
employed in the Holt - Winters algorithms. 1f the value of the smoothing
constant are low, it is the same as giving more weights to the past
observations. One possibility is to choose the smoothing constants
according Lo one' s assessment of the characteristic of the particular series
andér consideration. A more objective approach proposed by Holt and
Winters is to select those values that would have best forecast the given
observations.

The most common procedure is to seek the smoothing constants
that provide the best one - step ahead forecasts. The procedure 1s to
choose a grid of possible values of A, C and D and to calculate the
one -step ahead forecasts ( that 1s, z¢(L), t=m, m+1, ..., n—1)for

cach set of the values of the smoothing constants. That particular set

for which the sum of squared errors
11

s= L [a-z(l)]
. C=mi
i« smallest is then used to calculate actual forecasts ot all future values of
the series, The starting points m  for this procedure is taken to be an
integer sufficiently large as to allow the elfeots of the choice of initial
starting up values to have died down. Box and Jenkins ( 1976) considered
instead a particular class of linear stochastic processes that display
seasonal behaviour. These models can be used as the basis for models of

seasonal time series. These models will be discussed in chapter 11

2.8 Comments
Many time series have mmportant scasonal component and 1t 1s
necessary 1o measure it and adjust the time serles for seasonal variation.

Considerable efforts have been made for the development of seasonal



40
adjustment procedures which produces deseasonalized series. These
efforts led to various methods of finding measures of seasonal variation.

Each method has its own logic, advantages and disadvantages.
Under specific conditions, each is likely to be more efficient than others.
Some methods are valid under the additive model and somc under
multiplicative model. It will be found that some methods are quite simple
and easy to perform and others like B. L. 8. and Census Mark 11 are quite
lengthy and complicated. The investigator has to choose a suitable
method to fulfil his own purposes for seasonal adjustment.

These methods of seasonal measurement are based on the two basic
models of time series and the trend component of the smooth component
represented by the polynomial trend or the moving averages. The
methods covered can be used to find the constant seasonals.  For other
types of seasonals single set of seasonal measures may not be enough to
represent the changing seasonal patterns. Besides these methods, the
seasonal can be measured by using the models such as the exponental
smoothing, the harmonic representation and the Box - Jenkims (1976)
seasonal models. Spectral methods can also be used to assess the seasonal

adjustment procedures.
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CHAPTER II1

SEASONAL TIME SERIES MODELS

3.1 Introduction

. In chapter I, traditional methods of measuring seasonalily in a time
series were investigated. In these methods a time series 18 assumed to
be composed of four components if’ they exist and decomposition of a time
series into its components plays an essential role. Instead of this, variations
in a time series can be explained by a suitable model. Many models have
been suggested, including deterministic and  stochastic models. It 1s
common to use deterministic functions of time to represent the systematic
variation of a time series. the random part being explained in probabilistic
terms. Alternatively random functions of time can be used to explan certamn
variations in a time series.  In this chapter, stochastic time series models
which can be used to represent a seasonal time series will be discussed.
Thésc models were due to Box and Jenkins ( 1976 ) and have been

successfully applicd to many time series.

3.2 Stochastic weasonal Models

Linear stochastic process can display seasonal behaviour of a time
series. This class can be considered as a basis for models of seasonal
{ime series.

Consider the stochastic model for non - seasonal series.

p(BYZ, = O (B)a,
where @ (B)= ¢B)(1-B) and Z, = 7z—-n,.



0(B) is a moving average operator and ¢(B) 1s a stationary autoregressive
operator.

The generalized autoregressive operator ¢(B) determunes the eventual
forccast function, which is the solution of the difference equation

9 (B)a(L) = 0
where B operates on L.

To represent the seasonal behaviour, the forecast function should
trace out a periodic pattern. Then, ¢ (B) should produce a forecast
function consisting of a mixture of sines, cosmnes and possibly mixed
with polynomial terms, to allow for changes in the level ofthe series
and changes in the seasonal pattern.

For example, with monthly data, a forecast function which isa
sine wave with a twelve month period adaptive in phase and

amplitude, will satisfy the difference equation

(1= 3 B+BHY% (L) =0 (3.2.1)
This equation can be solved as

5 (Ly= J32(L-1)+4(L-2)=0
Let Z2(L) =A".

Therefore,

Pk )

Al A A= 0 o= 0 (3.2.2°

31
— A__+ _—
7 . 2
= gos 2L+ | sin =% {(3.2.3)
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Then,
z) =A X'+ B A

oo 2T D R T
= A(cos 2{% 1 sm %)L‘FB (cos —I? —1 T’Iz'sm )
= A (cos ziﬂizL +1 sin %L‘) + B (cos :11% ET 517%1,
= (A+B)cos 2—% + 1(A-B) sin Z;TZL

where A and B have to be determined from the imitial conditions.
z1(L) will then exhibit periodic behaviour. However, it is not true
the periodic behavior is necessarily represent economically by mixture

of sines and cosines because many sine - cosine components would

need to represent 'single - spike' of some sales data.

3.3 Seasonal ARMA Models

A vparticular class of linear stochastic processes that display
seasonal behaviour can be considered as a basts for models of seasonal

time series.

3.3.1 Seasonal AR Model

This model has the following specifications:
(1)if s 1s the number of observations per seasonal period, the order of
AR process 1s an integer multiple of s.
(2) the only non - zero coefficients are those with subscripts that are
an integer multiple of s.

The model is

Zt=¢s Zt-s+¢"_’sz t-2s +'"+d)Ps Zt-Ps + at



where P is the largest multiple of s represented in the model and a's

are random shocks with  mean zero. constant variance ¢® and

uncorrelated.

Let ¢,= ¢, , then the model becomes

Zl:¢l Zl-s+¢ZZL-25+"'+¢PZL~Px+at (\5‘%[)

which refersto a seasonal AR process of order P. The scasonal

autoregressive model (3.3.1) expresses the current value of the process z,

as finite weighted sum of P previous values z , .z, .. ...z .. of the
process plus random shock a . Here

Ela,] =0 for all t,

Via,] =E[a’] = ¢ for all t,
and Covla,,a,] =E [a , a] =0 for al t=t.

Autocorrelation Structure
The autocovariance tunction of the seasonal AR ( P ) model is
found by multiplying throughout in (3.3.1) by =z . and  takmg the
expected values, that is,
Y. = Coviz,,z |
=Elz,z ]
“E D0z, 20 0@z ) T (7,700 Ha 2, )]
T YT YTt sk =12, Ps
{3.3.2)
where Efz _;z,, ] = 7y; and the last term E[az | vanishes for

k>0 since z,, can only involve the random shock term a, up fo
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time t-k which are uncorrelated with a for k= 0. The autocoranances
are non - zero at lags s, 2s, .. ., Ps.

For k=0, the vanance of the seasonal AR processis obtamed

70:¢173+¢2Y25+"'+¢PYP6+Gaz (333)

2
8

since v, =y, and E[z,a,] = E[a’]=0
Dividing v, by v, , the autocorrelation function satisfies the
differenée equation
P =0 P TPt T 0P k=1, 2,..,Ps
(3.3.4)
The autocorrelation function will be non - zero at only lags that are

mteger multiples of s . ' The autocorrelation at seasonal lags persists

indefinitely, although with declining intensity.

SAR (1) Model
Consider the SAR (1 )model (P=1),
z,= ¢, z,,Ta,
where a's are random shocks with usual assumptions.
The autocovariance function of the SAR (1) model is obtained
by substituting P =1 in equation (3.3.2)-
We get
Yo = 0, 1., k=1,2,..., Ps

For k=0, the variance of the SAR (1) modelis obtained as
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v,= Covlz, .,z ]=Elz 7|
=Ei(¢z,.,Ta)z]
=0,E[z,,z,]+E[a, z,]
=0, Elz (2 v a)] +E[a(dz, .+ a)]
=Bz’ ]+¢,Efla,z J+o,Ela,z, ] +E[a’]
=47, + o,

~

where E[2° ]=v,,Ela/]=0 and E[q 2, ,]=0, s#0. Then, we

get
Yo = %
v 2
1=

When k=1, y,= Cov|z,,z, ] =E[z,z,. ., ]

=E[(¢ z,+a)z,,]

=oElz, 2. ]

= 0E[(¢ 2. ta )z, ]

=4 Elzg,., zl

=0
where E[a z,] =0, Ela,_ 2z, ] =0, s#1 and
Elz,,z.)=Elz,,(a,  téa,, t¢ > a_,+...7]=0.
Simulary, Y, =0 for k=2,3,..., s—1.
When k=s,y.=Cov {z,,2 ]=Elz, z_,]

=E{(¢z2,+a)z]
=0, B[z, ]+Efa 7]

= 0,7,
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where E[(Z 1= y, and Efa, z ] =0.

Then, Y, = 0 for k=s+1, s+2,...,2s-1.

Whenk=2s, v,,=Ccov|z,,z , |]=E[ z 7,,]
=E[(¢,z.,ta,)z,,]
=0E[z..z,.,]+E[a,z,]
=~ 6 E[(¢ 2zt 2, )z,,,]
= ¢’E[Z,, ]+ E[a,, z.,]
=077,

where E(Z ,,.]=y,, Ela,z,,]=0 and E[a, , z . ]=0.

Then, Y. = 0 for k = 2s+1, 2842, ..., 3s-1.

When k=3s, v,,= ¢y, and

Y, = 0 for k=3s+1,3s+2,...,4s-1 and so on.
The autocovariances will be zero at lags that are not integer multiple of s.

Therefore, the autocovariance function of the SAR (1) model is

o4
by 0
=5, ; k = 5,25, 3s, ...
=0  k#0, s,2s,3s, ...
and the autocorrelation function of the model is
Py =1 , k=0
= ¢ ck=s,2s,3s, ...
=0  k#0,s,28,3s, ...

Therefore, the autocovariance and the autocorrelations are non - zero

at lags that are integer multiples of s.
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SAR (2 ) Model
For SAR(2)model (P=2).

Z‘t:d)l Zt-s+ ¢2 Zt-l’.s+ at

where a's are random shocks satistiying usual assumptions.
The autocovariance function of the SAR ( 2 ) model 1s obtained by

substituting P =2 m equation (3.3.2)
We get

™ B Vs 0 Y s , k=1,2,...,Ds.
When k=1,2,...,s-1,

Ve =0
and for k=s,

[T P P

_ \}, .
!\l—szj ’

When k=s+1,s+2 ...,2s-1,
Y = 0

and for k =2s

T = 0¥ T4 Y
e 2
o’ j
E= + U
Ll—(bz d)z ')r)

When k=28 +1.2s+2 ,...,3s=1,
Y.~ 0
and Vo™ ¢ Y, T 0,7, for K=3s,4s,.

Similarly, the autocovariances will be zero at lags that arc notinteger

multiples of s,
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For k =0, the variance of the SAR (2) model is obtained by

substitutating P =2 in equation (3.3.3).

o= O Y. Ty ¥y + 0,

0]
= 4 (1_¢2) Yot b (T 0 ) 1o+ o

07 979
:(1_}2 1—J>+% )1, +o)

- (1"¢2)( O'a )
T/ N(1-42)2 -4/
Therefore, the autocovariance function of the SAR (2) model is
Yk:(l_d]z]( G;., 2j;kzo
Lt 02 /\(1 = 60)* - ¢
_ ¢ j o
[ e k=5

[1%¢ ¢j k=2

=0 Vet 0 Vi ;k=3s,4ds, ...
= () ;k¢0,5,25,3574s’_“

52}

Then, the autocorrelation function of the model i1s

p, = 1 k=0
= ! k=35
l_fj” ’
~ by, k=2
1 - ¢, ’
- (bl pk-s+ ¢2 pk-?s ’k:3s‘4s’
=0 k=0, s, 2s, 35, 4s, ...

Therefore, the autocovariance and the autocorrelation function are

non - zero at lags that are integer multiples of s.



3.3.2 Secasonal MA Modedl

This model has the following specifications:
(1)if s is the number of observations per seasonal period, the order
of the MA process is an integer multiple of s.
(2) the only non - zero coefficients are those with subscripts that arc
mteger multiples of s.

The model 1s

a -...—8

t-28

le al_esat-s_ezs

Qs at-Qs

where Q is the largest multiple of s represented in the model and

a's are random shocks with mean zero, constant variance Gaz and
are uncorrelated.
Let 6, =0, , then the model becomes
z,=a —-0a,_—-0,a ,~. ..—0ga g (3.3.5)

which refers to a seasonal MA process of order Q. The scasonal moving
average model (3.3.5) expresses the current value of the process z, as

a finite weighted sum of Q previous random shocks (a, .a, .. ... .4,

)
&

plus current random shock a, . Here
E[a,]=0 for al t.
V0a,]=oc} for al t,

and Cov[a,,a,] =E[a,a,] =0 for all t=t'.



Autocorrelation Structure

The autocovariance function of the seasonal model is found
by multiplying throughout in (3.3.5) by z, , and taking expected
values, that 1s,

Yk :COV[Z!’ZL-k] - E[Z[ Zt-k:]

=E[(a, -0, ,~0.a,-. .. -0 )@ —0a,,
_elat-k-ls—' ' ._eQat-k.Qg)] (336)
The autocovariances are non - zero at lags s, 2s, ..., Qs.

For k=0 . the wvarance of the seasonal MA (Q) process 1is

obtamed as

Vo= B (82, 88, ~Oe 0, )(3-0, = ~B.a )]

= (1+02+8+...+8)0;
where E[a’] = ¢} forall t, and Efa a =0 for all t= (.

For k=1,2,...,s—1,

Y= 0
and when k= s,
'Ys:(_e1+8182+6283+"'+6Q-18Q)Gf ’

Fork =s+1, s+2 ...,2s—-1,
7, = 0
and when k = 2s,

Vo™ (—92*'6163+6264+“'“LOQJQ”)G'2 '

<
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For k=2s+1, 2s+2, ..., 3s-1,
Y, =0

and when k=0Qs,

Then, ¥, =0 for k=Qs+1, Qst+2 and so on.

The autocovariances will be zero at lags that are not integer multiples of s .
Therefore, the auntocovariance tunction ot the seasonal MA (Q)
process 1s
v, =(L+67+0+...+6,)c} k=10
=(-0,+0,0,+6,0,+...+0, ,0,)07 k=5
=(-0,+0,0,+6,6,+...+0, ,0,)07 . k=2s
= _ 0, ¢} k= Qs
=90 ck=0,8,25,....,0s.

Then, the autocorrelation function of the process 1s

p,=1 ; k=0
—8;+8182+8283+...+8Q_18Q k=
= 5 — S
1+07+02+...+0)
:-—82+8193+8294+...+8Q_28Q ;k:?_s
1+07405+ ..+ 05
Y,
= St k=0
= ( s k#0,82s,..,0s.

Therefore, the autocovariance and the autocorrelation function are

non-zero at lags that are integer multiples of s and are less than or equal
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to Qs. For a seasonal MA process of order Q the correlation persists only

for Q seasonal periods.

SMA (1) Model
Consider SMA (1) model (Q=1),

Z, = a

0a

C Vi s

where a/'s are random shocks with usual assumptions.
The autocovariance function of SMA (1) model 1s obtaned by

substituting Q = 1 in equation (3.3.6), we get

y.~E[@a-06a, )a-0a,.,)] ck=1,2,.. .
For k=0, the variance of the SMA (1) process 1s

v, =(1+82) 6.

For k=1,2,..., s -1,

For k=s+1,s+2, ...,

v, =0.

Therefore, the autocovariance function of the SMA (1) process 1s

Ve = (1487 0] 1k =0
=-0,0/ Lk =g
= { k=0, s



Then, the autocorrelation function of the process is

p, =1 k=0
= =6 1 k=s
1+96°
=90 k#0, s
Therefore, the autocovariance and the autocorrelation are non - zero ar
lags 0 and s.
SMA (2) Model

For SMA (2) model Q=2),
z,=a,—6a, - 0,a .,

where a's are random shocks with usual assumptions.
The autocovariance function of SMA (2) model is obtained by
substituting Q=2 in equation ( 3.3.6 ), we get
Y.~E[(a,-6,a, -6 A, )@ -8a, -0a,,,)]
k=12 . . 28

For k=0, the variance of the SMA (2) processis
o= A+ 067+6,)6? .
Fork=1,2,...,s-1,
Y, = 0
and when k=35,
Y, = (-6,+60,)0? .

For k=s+1,8+¢2,..-,25-1,
Y, = O




and when k= 2s,

For k=2s+1,2s+2,...,

T, 19 .

Therefore, the autocovariance function of the SMA (2) processis

Y, =~ (1+67+0,} )0/ k=0
= (-0, +00,)¢c/] , k=s
=_626: ,k::zs
=0 k=08, 2s,

Then, the autocorrelation function of the process 1s

p,= 1 k=10
:—81+8162 ==
1+6%+0;
"9 ck=12s
1+ 6%+ 63
=0 k=08 2s .

Therefore, the autocovariances and the autocorrelations are non - zero at

lags 0, sand 2s.

3.3.3 Seasonal ARMA Model
The logical generalization of the seasonal AR and MA processesisa

mixed model incorporating both. Such a model would be of the form

Z, = ¢1Z 1T ¢: Z,5, ¢P zl_sz.r ax-el at-s-e2 Ay g "eq A9
(3.3.7)
This modelis called seasonal ARMA process and denoted by SARMA

(P,Q).



The seasonal autoregressive-moving average model (3.3.7) expresses
the current value of the process z, as a finite weighted sum of the P
previous values (z , ., Z, ., - - - » Z p;) Plus current random shock g and a
The

tinite weighted sum ot Q previous random shocks (a, _.a ...

t-2s (S s)'

a's are random shocks satisfying the usual assumptions. That s,
E[a]=0 for all ¢t
Via]= o for al t,

and Cov{a,a] = E[aa] foral t=t".

Autocorrelation Structure
The autocovariance of the SARMA (P, Q) process is
v =Covlz, ,z. ]~ Efz,z,,]
- [¢XZL-SZL-}<+ ¢ 2202 Za +¢P Zoip LAz
-0.a,

Z,,—...—0.a,,.2,.]

Zyy— 0 ,a Lk qf 1.qs

s t-2s

=0 Y st Gt 0T et T (K) = Oy (Res)
—0 v (k=25) ... =07, (k—Qs) (338)
where E [z ;2 .| = v, Efa,_z .|~ y_(k—=1)
and E [a,2,,] = 1.().
For k=0 the variance of the process is obtamned as
=0 %+ b, Yt Yt oS =0 Y9
-6,y ,.(-28)—.. . —0,7.(-0Qs) (3.39)
since y_,= y; and v,(0) = o] .

The autocovariance of the process satisfies the difference equation

yk=¢)lyk_s+¢zy,‘_28+...+¢)Pyk_ps 'k 2Qs (3.3.10)

where v,, (k)= 0 for k=s,2s,...,0s



Dividing y, by 7, , the autocorrelation function of the process

satisfies the difference equation

Py~ ¢1pk-s+¢2pk.z§+~--+¢ppk-pg ;k 20Qs (3.3.11)

The autocorrelation structure of the sesonal ARMA process is precisely
analogous to that of nonseasonal ARMA process with nonzero correlations

occuring only at the lags s, 2s, 3s and so forth.

SARMA (1,1) Model
Consider SARMA (1, 1) model P=1,Q=1),

z, = ¢z, ,+ta, — 0 ,a (3.3.12)

where a's are random shocks with usual assumptions.
The autocovariance function of the SARMA (1, 1) process is
y,=Cov iz, ,z, ]=Elz,2, ]
=E[0z, .,z ,ta,z  Oa_ z, ]
=0 YT (k) -0y, (k-s) (3.3.13)
where E{z, 2z, ,1=7v,.,, Ela,z,] = v,.&)
and Efla  z, ] = Y ak—s).
For k=0, the varance of the SARMA (1, 1) model 1s obtained as
Yo = 0Vt 1L, (0) =07, (=s)
= 4,7, to6.—6,7.,.(-s) (3.3.14)

where y,= v, and y_,(0) = 0.



For k=35,

Y. = 0%t Y., (8)-0,7,0)
= ¢,7,-6,6]
where y,_(s)=0 and y_ (0)=0c.
For k = 2s,

Y™ &V 1,28 -8 7,()
=47,
where v, (k) =0 for k=s,2s, ...

Similarly, for k= 3s,

Yoo — ¢1 Yot Y“(:SS.) — 01 Y :U(_zs')
- lbl Y'.’s .

In general , we get

Yo ™ ¢1 Ta-ys

But, in the equation (3.3.14)

Yo = 07, t 67— 0,7 ,(=s)
T.(-8) = Ela,z.]
= Ela, (¢$,z, +a, , —07a)]
= ¢Ela,z]+E[aa |-6F][a]
= (¢~ 0) 05
Vo0 =0c? Efla,a ] -0

where Efa, z ] = ,s#=0 and Ela’] = 0.

Therefore, the equation (3.3.14) becomes

Ty = 07,70, -0 (¢ -6)c.] (3.3.16)
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By substituting vy, = ¢y, - 00 1 equation (3.3.16)the variance

of the process 1s obtamned as

Yo~ ¢1 (¢)1 Yo~ 61032 ) + 0-32 - 91 (¢'1 - 61) 032

/1—2¢181+9%j 5
2 °.

AN ]_¢I

By substituting the value of 7y, in y_ = ¢, v,— 0,07 we get,

2
Yo :¢] [1 2¢161 +61) G:_ 810‘:

1— ¢
z[(cbz—el)(l—wl)] i
(1-¢7) “
Therefore, the autocorariance function of the SARMA (1,1)process is
_ 2
v, = [l 2‘1’1912-}-91} O,a: k=0
1-4¢j
_[(cbi—-e])(l—qa.ei)} b
= : o, k=5
(1-97)
:¢1Yk-s ;k::u5,35....
=0 k=058, 28,

Dividing vy, by v,, the autocorrelation function of the process

~

1s obtained as

P k=0
— ((bl_e[)(l'—(blel) o=
. » N
(1-20,0,+07)
BRLEY k=28, 3s, .

=0 k=0,s,2s8, ..
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3.4 The General Multiplicative Seasonal Model

Box and Jenkins (1976) proposed that correlation between
observations withinscasonalperiods may be mtroduced by supposing that
the noise mput to the seasonal ARIMA 1s serially correlated rather than
independent. In particular, they suggested that z be generated by the

seasonal model of the form

O(B)VPz = (B, (34.1)
where Vy=1-B° and ®(B%), ®B*) are polynomials n B* of
degrees P and Q, respectively, and satisfying stationarity and mvertibility

conditions. Similarly, a model

O(BHVY 7z = OB, (3.4.2)
might be used to link the current behavior of a month (e.g. March) with
previous March observations, and so on, for each of the twelve
months. Moreover, it would usually be resonable to assume that the
parameters @ and © contained in these monthly models would be
approximately the same for cach month.

Now the error components o, ., ..., in these models would
notin general be uncorrelated. For example, the data for April, 1960,
while related to previous Apml, would also be related to March of
1960, February of 1960, and January of 1960, etc. Thus it would be
expéctcd that o, in (3.4.1) would be related to «,, in (3.4.2) and to
etc. Therefore, to take care of such relationships, a seasonal model

d(B) Vi, = 0(B) a, (3.4.3)

is introduced.Where now a, is a white noise process and ¢ (B) and

93
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0 (B) are polynomials in B of degrees p and q respectively, and
satisfying stationarity and invertibility conditions, and V=V, =1-B.



Substituting (3.4.3) in (3.4.1) a general multiplicative model is
finally obtained as

9, (B) ®, B)V°VPz = 6 (B) ©,(B%) a, (3.4.4)

In (3.4.4), the subscripts p, P, q, Q have been added to remind

the orders of the various operators. The resulting multiplicative process

will be said tobe of order (p,d,q) x (P,.D,Q), . A similar argument

can be used to obtain models with three or more periodic components

to take care of multiple seasonalities.
It has been assumed that stationary series V'V? z  has a zero
mean. The degree of seasonal differencing D and that of consecutive

differencing d will in economic contexts usually be either 0 or 1 as
required to achieve stationarity in the differenced series.

The seasonal model is multiplicative in the sense that the
observed data result from the successive filtering of the random
noise series a , through the non - seasonal filter (3.4.3) and the

seasonal filter (3.4.1).

Multiplicative ( 0,1,1) x (0,1,1),, Modd
- Consider the multiplicative (0, 1, 1) x (0, 1, 1),, model. Such a

model

Vizz,= (1-0B%q,
is employed for linking z's one year apart. Suppose futher that a
similar model is employed

Va,=(1-0B)a,
for inking «'s one month apart, where in general 6 and ® will have
different values. Then on combining these expressions, the seasonal

multiplicative model
VViz,= (1-0B) (1-®B"a,
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of order (0,1,1) x(0,1,1),,1s obtained.
Now, VVhz,=(1=-B)(1-B%)z, = 2—7, -2, + 2
and
(1-0B)(1-®B%)a, ~a, —0a,  -®a,, +80a
Then the model written explictily 1s
7= 7, V2.~ 7y ta,—0a  —®a , 180a ..

The invertibility region for this model, required by the
conc.lition that the roots of ( I- 8 B) (1- ® B'?) = 0 lie outside the unit
circle, 1s defined by the inequalities,

—1<08<1 and -1 <O <1
Note that the moving average operator
(1-6B)(1-®B%) =1-0B-6B*+ 0 ®B"
is of order q+sQ=1+(12)1 = 13.

3.4.1 Autocorrelation Structure

The autocorrelation  structure of the stationary  process
(1 -3 =B) 2z, is generally very complex. Nevertheless, it 1s
worthwhile to make some general observations and work out an
example.

First of all if we combine the polynomials in B on both sides
of the model it is seen to be essentially an ARMA process of order
Ps+pand Qs + q. Many of the coefficients appearing in the expanded
model will, however, be zero, resulting in certain simplifications in the

aulocorrelation structure.
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Multiplicative ( 0,1,1 ) x ( 0,1,1 ),, Model
Consider the multiplicative (0,1,1) x(0,1,1 ), process
(1-B*)(1-B) z,= (1-©, B¥)(1-6,B) a,
which 1n expanded form is
y,= (1-6 B-0 B* 0,60 B"”)a,
where vy, denotes the stationary series, (1-B?)(1-B) z, .
Allowing the backshift operators to act ona,, we have

Yo T el az-1_®1a

. 10,0 a, (3.4.5)
which for analytical purposes is simply a MA process where only the
first, twelfth and thirteeth coefficients are non - zero. The a's are
randlom shocks  with mean zero, cosntant variance G: and are
uncorrelated. That 1s,
| Ela }= 0 for all t,

V(g |=E[a’] =ocfor al t,

and Ela a,] =0 for all t= .
The autocovariance of y, is found by multiplying equation ( 3.4.5)

with y, , and taking expected value. That 1s,

= Covl yoyal = BTy vl

= El(a,-6,a _,-®a, ,+00 a )

(a,-0a  ,~-0®a .+ 0,0 a,_, )]

where Efa’] = o} for all t and Efa a,] = 0 for all t# t'.

Fork =0, the variance of the process is obtained as

To Cov [ Yl = Elyy )= E] yi']
= [« [(211—01 a,, --®1'1 1 91®1 a3 )ZJ

iz

- ( 1 + 81 2)( 1%_ ®12) G{i2
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The autocovanances of y are
i =Covliywy, 1= Elyy.l
=E[(a~0,a, ~®a, , +t00 a )
(a,—0,a, ,~®a ., +00 a )]
= -0 (I+0 )0}
1= Covlypy ] = ELy oy,
=E{(a,-0,a,,-®a, , +00® a )
(a,,-6a,,-®a,_,+00 a_.)]
=0
Similarly,
Y.,=0,y,=0,..., v, =0
Y= Covl yoyon] = EL vyl
=E[(a,-0,a,,-®a, , t6©® a )
(a,,-9,a,,-©a,

5 e]® 10':

+el®1 at- 24)]

-23

1= Coviy y ]l = ELyy )
=E[(a,-0,a,,-®a,, t0® a )
(a,,-92a,,-®a ., 00 a, )]
= -0 (1+6 )5}

T3 COV[ YUyt-l'}] =E [ Y1Yr-13]
=E [(31_ 81 a,, - a Y +61®1 43 )

(.at-m—el a4 _®13 +81®1 ) ]

L-25

= 0,8, ¢°




n
n

Y= Cov vy = EL vyl
=E [(at —61 a4, _®131-12 +91®1 a3 )
(aL-M - e[ A T ®lat-26 +81®1 dy. 27) ]
= (
Similary,
vs=0, v,=0, ..., and all other y, are equal to zero.

Therefore, the autocovariance function of vy, is

Y, =(1+0,)(1+0% s , k=0
= —-0,(1+0)0; c k=l
= 6,8, 6] Ck=11
= -0, (1+08)0e; k=12
= 0,0, 6/ , k=13
-0 L k=0,1,11,12,13.

Dividing vy, by 7v,,the autocorrelation function of vy, is

p.= 1 k=0
_ =9 k=1
(1+6% ’
= %®‘ - k=11
(I+6)(1+67)
= ‘®g k=12
(1+®7)
0,0,

z(nﬂba+®h

=0 ; k=0,1,11,12,13.,




66

Therefore, the only non - zero autocorrelations of y  are those at

lags 1, 11, 12 and 13. Thus, the correlogram of this process will
display spikes at lags 1, 11, 12 and 13 with the later 3 spikes being

symmetric around p,, .
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CHAPTER IV

STOCHASTIC MODEL BUILDING FOR A TIME SERIES

4.1 Introduction

From the general statistical point of view, an important step in
the . analysis of time series 1s to construct a model for the underlying
stochastic process. The model can be used for prediction, system design,
simulation of a system and other purposes. Box and Jenkins (1976)
proposed stochastic models for prediction, system design , stmulation of
a system and for the representation of a time series and the model
building procedure. The procedure consists of athree steps iterative
cycle of

(a) Identification of the form of the model,

(b) Estimation of the model parameters,
and (¢) Diagnostic checking of the model.
This procedure is quite general and can be used in building any statistical
model . In building a stochastic model of the ARIMA type, the three

steps consists of the following tasks. The ARIMA type of model is
¢(B)Vz = 0(B)a
where V¢ = (1-B)*, ¢(B)=1-¢,B - . .. -¢,B" and 6(B) = 1-6,B - .. . -6 B°.
For seasonal time series, seasonal models are fitted to a given time series
by employing essentially the same principles as for the nonseasonal
tune series.
In the identification step, the type of model and order of that

model , thatis, p,d and q of the model have to be determined.
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Procedures employed in this step are of necessarily inexact and
required a good deal of judgement. The chosen model is not final and
is to be discarded if subsequent analysis suggests that some alternative
'fonﬁ might provide more adequate representation of the data. Nature
of the estimation techniques applied in this step is such that, initial
rough estimates of the coefficients ¢'s and ©'s of the identified models
are only obtained.

In the estimation step, coefficients of the identified model are
estimated using efficient statistical techniques . To obtain the estimates
of the parameters ¢'s and ©'s, at least onc of the methods such as
maximum likelihood , least squares or Bayesian has to be used.

In the diagnostic checking step, checks are employed to
determine whether or not the tentatively chosen model adequately
represents the given set of data. Any inadequacy revealed may suggest
an alternative model spectfication.

oIt this 1s the case , the whole iterative cycle of identification ,
estimation and diagnostic checking is repeated until a statisfactory
model is obtamned.

In the following section, the steps in model building procedure,
nzﬁnely, identification, estimation and diagnostic checking will be
classified. The statistical tools used in identification step such as
autocorrelation function and partial autocorrelation function will be
discussed in detail. The estimation of parameter by using maximum
likelihood estimates will also be described and the tests associated with
model diagnostic checking will also be presented. The models used to
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lustrate the tools and techniques are those which are usually tfound to

represent atime series in practice.

4.2 Statistical Tools Used in Identification

Identification of the model is the most difficult  step i the
model building procedure. In this step only a number of  peneral
principles can be laid down. No sure - fire deterministic approach (o the
problem exist. It is necessary to exert a degree of judgement which
1s greatly improved by experience.

In selecting a model at this stage, one is committed to no more
than an assessment of its validity. The initially chosen model can be
discarded at a later stage of the analysis if 1t appears (o be not
suttable. It 1s also possible thal one may wish to carry forward from
this stage not one, but two or more possible models.

The two most useful toolsto be used n this stage are the sample

autocorrelation function and the sample partial autocorrelation function.

Thatis, r, k=0, 1, 2, . .. as an estimate of the theoretical autocorrelation
function p , ,k=0,1,2, . and Hp W k=012, ... avan estimate of
the theoretical partial autocorrelation function ¢, , k=0, 1,2, ... . They

have to be used 1 order to judge the values of p, d and q. Simularly,
in the estimation and diagnostic checking of a chosen model these

functions have to be used.

4.2.1 Autocorrelation Function of A Time Series
Let us define

z= 2, t=12(i-1)+j 1 i=12....n;j=1,2.. .12
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where z 1s the value of the varable z at the Y month in the 1"

year. Then, the autocovariance between z and z ,, 1s denoted by vy,

and 1s defined as

'Y(l,l+k) = Cov (Zt’ ZHk) =k [Zl- E( Zt)] [Zuk i} P(‘é tn;” )
Similarly, the autcorrelation between z, and 2z, 1s denoted by p -

and 1s defined as

0y = o). o 3w
SV (@) Vizi)

After mmposing the stationary assumptions, the autocovarance and

autocorrelations do not depend on the actual time, but on the time lag

(time difference ) and they can be written as y,_ and p . Then

v =Bl 1) (2, - 0] k=12,
where p 1s the common mean of z and simularly
= }3 sl = 7
p k 'YO > 1\ 1> hay

where
v, = E(z,-pn)? 1s the variance of z.
Note thaty, =y ,and p , = p _, .

A set of autocorrelations {p  } , k=12, ... 15 known
as autocorrelation function (acf) and the plot of p | against the lag
kis called the correlogram.

The autocorrelation is the dimensionless measurement and it lies
between ~1 and +1 . The most important use of autocorrelation function
1s in the determination of the model for the underlying process and
the estimation of 1ts parameters.

The above definition of acf are for the theoretical values. In

practice, we have a finite time sertesz ,,z,,...,z, of N observations.
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Thus, the theoretical autocorrelations are to be estimated from the

observed series.
As an estimle of the k" lag autocorrelation, p ,

Nf‘k _ N
% (m = 7) (2 -2)

P =1 =E— . (4.2.1)

Xz — 72 )

=]

—_

N
- 1 .
where 2= 2 7 is to be used.
=1

4.2.2 Autocorrelation Function of An Autoregressive Process

The autoregressive model 1s an extremely useful model m the
representation of certain  practically occuring time  sertes. In this
model, the current value of the process 1s expressed as fite, lincar
aggregate ( weighted sum ) of previous values of the process and a
random shock term a,.

Let us denote the values of a process at time t, t-1,t-2,...
by z,z.,,7%.,,...and also let p be the mean value of 2z, then

== (7 —p)tb(z )t g (- 0) da,
is called an autoregressive process of order p and denoted by AR (p ).

(z,.,—p ) 1s lincarly regressed on (7 —-w), (7 —p) ..., (7 —u)
But as a regession equation, the independent vanables (z, — 1),
(z.,—HK),....(z ,—p) are the previous values of the dependent
variable ( z — p ). Thus, the variable z 1s regressed on previous values
of itself and hence the model is called as autorcgressive.

In this modecl, ¢,,¢,,..., ¢, arc thc autorcgressive ocoefficients

and g is assumed to be independently and 1dentically distributed random



error term with mean zero and variance 5,7 . That is

Efa,}]=0
Efa,a,,]1=0 k=0

= Gaz k=0 -
The most widely used AR models are only the lower order
autoregressive models, especially of order 1 and 2. For p=1, the
AR(1) model 1s obtained as
z— u=0,(z.,-u)ta,
and there are only one coefficient ¢ to be estimated.
Similarly, the AR(2) model 1s
= p=0,(z,-pn)+ ¢,(z,-pn)ta,
and there are only two coetficients ¢, and ¢, to be estimated.
The AR (1) model is also known as the Markov model and
the AR (2) model 1s also known as the Yule model.
The autocorrelation function of a stationary AR process 1s
found by multiplying throughout n

- pu=0¢, (7. -p)*t o, (z ,—p)+. ot (7 —p)ta

p !

by (z.,—u) and taking the expected value, that is,
v ~ El(z—p)(g, —n)l
=E[o(z., —p)(z.  —pu)t. 0 (2 —) (7 —p)
+(z-u) a]
=0, Yt Pay it Ty k= L2030
where E [( z{_j—u Yz ~u)) = v, and the lastterm B [(z, ~pi ) a |
vanshes for k>0 smce (z_ —p) can only involve the random shock

term a up to time t-k, which are uncorrelated with a, fork=0.



For k =0 the variance of the process is obtamned as
Yo =06 =0, 7, + b7, 5. .. +b,y + o]
since v =y, and E[(z,-p)a |=E(a’)= o/
Dividing y, by v,, the autocorrelation function satistics the same
form of difference equation as the model and
=0 Pt bt T s KT L2 3
(4.2.2)
which 1s known as Yule - Walker equations.
For AR (1) process ( p = 1), the autocorrelation function

satisfies the first - order difference equation

P.= 0, P, k=1, 2 3.
which with p,=1 and replacing k=1,2,3,..., we have
P= 9,

p2;:¢lpl :¢12

b= o k=12,
In this process, the autocorrelation  function decays exponentially
to zero when ¢, 1s positive, but decays exponentially to zero and
oscillates in sign when ¢, 1s negative,
For AR (2) process (p = 2), the autocorrelation function
salisfies the second - order difference equation
P ™ O Pt bap ' k=102

which with starting  value p,= 1 and replacing k=1, 2, 3. . . . we have
PP 0t dap
P2 = &Pt b,

P; — ¢1 pL,t 0,p, and etc.



Inthis process, if ¢+ 4 ¢,2 0, the autocorrelation function
consists of a mixture of damped exponentials and if ¢,°+4 ¢ ,< 0, the
autocorrelation function consists of a damped smce wave.

By substituting p=2 in the Yule - Walker equations, we get

pp= 4, F 0,p,
P2 = P00,
and by solving these two equations,
1 —
¢1:p1( 52)
1 -p)
2
(bzﬁﬁz — pz‘ .
1 - pj

When ¢, and ¢,are given, the expressions for p  and p ,in terms of

0 and §, are

__ b
S

b
[ =4

Pz = 02+

In general, the autocorrelation function of an AR process
will consist of a mixture of damped exponentials and damped sme

wavces.

Stationarity Condition for An Autoregressive Process
The parameters ¢, , ¢,, ..., ¢, of an AR ( p} process must
satisfy certain conditions for the processto be stationary. The AR(p)
can be expressed as
z,-u=90 2~ pt)+'<b,}5(zl_3— Ryt otz - r)tay

By using backward shift operator B, it acn be wontten as,
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SN VPR R % CAR DERRE A C IS DAY
(- .- ;B - - 4B) (7,1 =1,
b (B) (2~ 1)=a,
(z,-)~ ¢ B)a,
where ¢ B)=(1-¢,B-¢,B°—. . - ¢,B%) .
Since ¢ (B) is the p™ order polinomial n B, it can be written as
d(B)=(1-GB)( 1-G,B)...(1-G,BM
where Git are the roots of the equation $ (B)=0. Then, cquation
z-p) = ¢ ®)a,

can be expressed in the partial fractions,

where K, are arbitrary constants.

If ¢'(B) is to be a convergent series for |B <1, then we
must have |G | <1, where 1 1,2,...,p. Since G are the rools of
the equation ¢(B)=0, it can be said that the roots of the equation ¢
(B) = 0 must lic outside the unit circle. The equation ¢ (B) = 0 1s called
the characteristic equation and the conditions | G | < 1;1= 1, 2,...,]pare
called the stationarity conditions of the AR (p) process.

For p=1, the AR (1) process

z—-p= ¢, (z,,—n)*ta,
can be expressed as
(1-¢,B)(z,-p)=a,
(z,-p)= 4" B)a,
where $(B) =(1-¢,B).
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Since the root of the characteristic equauon (1 -¢, By = 01w
B = ¢,7, thiscondition 1s equivalent to saymg that the root of
(1 -6, B) =0 must he outside the unit circle. This  implies  that the
parameter ¢, of an AR (1) process, must satisty the condition
| d, | <1 toensure stationarity.
For p=2,the AR (2) process
Zo— = (2 ) (g ) Ay
can be expressed as
zZ,—u =0 ,B(z, —w)+p,B*(z —u)ta,
(1-¢6,B-¢,B*)(z,-n)=a,
(z,-p) =¢" (B) a,
where ¢ (B)= (1-6 B- ¢,B*).
For stationarity, the roots of the characteristic equation
(1-¢,B=$,B*) =0 must Lie outside the umt circle. The roots of
(1-¢B—¢,B*) =0 are

U Joi+ 44;

! )

—

b - S,
and Bz ~-~——'——S—- :

Then | 0, B +4 9B =4 B~ 48,0 +¢

and for B]<1 |

4¢,<4-44¢,
or o, +¢,<1
Similarly, for[B,|< 1, the condition ¢, —¢ = 1 must be satisbed.
By multiplying  both  roots, B B,=—¢, and smee 3] |
and B} < 1, [¢,) must beless thanone or = 1< ¢, 1.
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Therefore, the parameters ¢, and ¢, of an AR ( 2) process,

must lieinthe triangular region

¢1+¢2<1
¢'2-¢'1 <1
and -1<¢, <1.

4.2.3 Autocorrelation Function of A Moving Average DProcess

The moving average model is an extremely useful model in
the representation of certain practically occuring time series. In this
model, the current value of the process is expressed asa random
error term a, and finite weighted sum of previous values of a's .

Let us denote the value of a process at time t by z, and let
be the mean value of z then

z-u=a-8a,,-0,a, ,-...-0_ a,_

15 called a moving average process of order q and denoted by
MA (@).

z, -y 1s linearly regressed on a finite number q of previous
a's. and current value of a.

In this model 6,,6,,...,60 , are the coefficients of the
moving average terms and a is assumed to be independently and
identically  distributed random error term with mean zero and

variance ¢, . That is,

Efa,)=0
Efa,a,]=0 k=0
= g k=0

a
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The most widely used MA models are onlythe lower order
moving average models, especially of order 1 and 2. For q=1,
the MA (1) model is obtamed as

Z,—H :at_ela’t-l
and there are only one coefficient 6, to be estimated.
Similarly, for q =2, the MA (2) model is
z-p=a~-0,a,,-6,a,,
and there are two coefficients 6, and 0,to be estimated.

The autocorrelation function of a MA processis found by
mulliplying throughout 1n

z,-nw=a-0a,,-0,a,,-...-0_a,

by (z,,—p) and taking expected values, that is
= El(z,—p) (2, —1)]
=E[(a-0,a, —...—-0_ a2, )
(a,,-90,8,,-...—0_a t_k_q)']
= E[(-0,8,,+0,0,, 8, ...+ 0,042, ,+CPT9)]
wh_ére E (CPT's ) are expectations of cross product terms and are
equal to zeros.
Therefore,
v, = (-0,+0,0,,+0,0,,+...+0 ,0) s} ;k=12,...,q
=0 :k >q.

For k=0 ,the varance of the process is obtained as

v, =(1+0+687+...+67) 0 2



79

Dividing y, by 7v,, the autocorrelation function 18

D ::-(’Jk+918k+1 + 02012+ ... 0kl
‘ 1+02+05+ ... +02
::0 -’k>q,

k=1,2,..., 9

We can see that the autocorrelation function of MA (q) process
is zero, beyond the order q, of the process. In other words, the
autocorrelation function of a MA (q) process has a cut - off after lag q.

For MA (1) process ( q=1) the autocorrelation function is

— O
1+ 6!
= ) k> 1.

Pk = k=1

Thus, the autocorrelation function of MA (1) process has a cut - off
after lag 1.
For MA (2) process (q=2), the autocorrelation function 1s
_ =Byl — Og)

: k=1
1+ 62 +63
__________ :Qld_ ,k=2
1+0}+03
=0 k> 2.

Thus, the autocorrelation function of MA (2) process has a cut- off

after lag 2.
Invertibility Conditions for A Moving Average Process

The parameters 6, 6,,...,0 of a MA( q) process must satisfy
certain conditions for the process to be invertible. The MA (q) process
can be expressed as

z-—u=a-0a, -06,a,,-...—-0,a,,
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By using backward shift operator B, it can be wrtten as,

z,-w=a~0Ba -0,Ba - .. .-0 B,
=(1-6,B-6,B~... -0 _B%)a,
=0 (B)a,
where 8(B) = (1-8,B—6,B'—... -6 _B%).

Since 0 (B)is the g™ order polinomial in B, it can be wrilten as
OB)=(1-HB) (1-H\B)...(1-H_B)
where H.' are the roots of the equation 8 (B)=0. Then, equation
(-1 =0(B)a,

or a=0"(B)(@z -n)
can be expressed in the partial fractions,
a, = M (z,— 1)
L& a-EB)

where M, are arbitrary constants.

If 0'(B) isto be a convergent series for [B] =1, we must
have |H|< 1, where j=1,2,...,q. Since H" arethe roots of the
equation 0 (B) = 0, it can be sard that the roots of the equation 0 (B) = 0
must lie outside the unit circle. The equation 0O (B) = 01s called the
characteristic equation and the conditions |H, | <1, 53 =1,2, .., q are
called the invertibility conditions of the MA (q) process.

Note, since the series

6B)=1-6,B-0,B"- ... -0 B
1s finite, no restricions are needed on the parameters of moving
average process to ensure stationarity.

For q=1,the MA(1) process

2~ K :al—elal-]



can be expressed as
z—n=a—-9Ba,
=(1-6,Bj,
=0 (B)a,
where 6 (B)= (1 -0 B).
Since the root of the characteristic equation (1 -6 B) = 0 1s
B= 0,", this condition is equivalent to saying that the root of (1 - 8,B) =0
must lie outside the unit circle. This implies that the parameter of a
MA ( 1) process, must satisfy the condiion |6, | < I to ensure
mvertibility
For q=2 the MA(2) process,
z,-u=a—0a _~0,a ,
can be expressed as
z,—n=a-0Ba-06B%a
=(1-0,B-0,B%)a,
=0 (B)a,
where 6(B)=1-0,B-6,B"
For invertibility, the roots of the characteristic equation
(1-0,B-0,B")=0must lic outside the umt circle. The roots of
(1-0,B-0,B°)=0 are

B, - and  By= —Yo—"

8, /07 +40, | 0, JBi+ 49,
E 2

Then, 07B+4 BF=4B, —4B,0,+ 0
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and for |B,|<1,
__ 40, < 4-40,
or 0,+0, < 1.
Similarly, for |B,|< 1, the condition 8,~ 6, <1 must be satisfied.
By multiplying both roots, BB, = — 0, and since |B,[<1 and |B,|< 1, |
0, l‘.must be less than onme or —1<0,<1.
Therefore, the parameters and of a MA (2) process, must lie in
the triangular region
0,+0,<1
0,- 0, <1
and -1<0,<1.
These are parallel to the conditions required for the stationarity
of an AR (2) process.

4.2.4 Partial Autocorrelation Function of A Time Series

The partial autocorrelation function is another way of describing the
dependent structure of a time series. It is useful for the identification of
the type and order of the model to represent a sample time series.

The autocorrection p, measures the correlation of terms of the
series separated by k terms or k lags apart. The partial autocorrelation
¢, measures the lincar dependence between p; and p;., for j<k.In
other words, it measures the correlation of the terms of the series k
lags apart irrespective of the other terms of the series.

A set of partial autocorrelations { ¢, }, k = 1, 2, ... isknown as
partial autocorrelation function ( pacf ) and the plot of ¢,, against the lag
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value k, k=1,2, ... 1s called the partial correlogram.

The theoretical values ¢,,, k=1,2,. ... are estimaled from the
sample time series and in practice, the following recursive formula,

due to Durbin, can be used to find the estimator chk

K »
Tkel __E ¢'kj Tyin-j
Fl -

(ﬁk'*l.}ﬁl = k. ;k_:-lﬁzi e (42%)
1 "—Z ¢ K - I'J'
1
and $k+1,j = ¢ i —$k+1,k+1 ‘Lk,k—»_ﬁl T=le 2 o K (4.2.4)

th

where r, is the j% sample autocorrelalion which estimates p .

By solving these equations the set of partial autocorrclation
estimates { &)kk ), k=1,2,...can be obtained. In these equations § s

equal to r .

4.2.5 Partial Autocorrelation Function of An Autoregressive Process
Deciding the order of the autoregressive process to be fitted to

an observed time seriesis similar to the process of deciding on the

number of independent variables to be included 1n a multiple regression.

Denoting ¢,,, asthe "

coefficient 1n an autoregressive process  of
order k, the partial antocorrelation is ¢, which 1s the last coefficient
of the k order AR process.

From the Yule - Walker equations, ¢, satisfy the set of equations

Pi=duP it T P an O T2,k

and 1t may be wrntten as



S e 4 -
1 P P2 . . .. Px q)kl Pl
pr 1 pro L P2 iz P2

Pkl Pr2 Pk3 .o 1| b | [ Px

Solving these equations for k=12, 3, ..., successively, gives

0, = P,

1 P1
1 2 —=
¢l22= p p p2 pl
I pi 1 —pi
pr 1

1pl P
pi 1 p2

b= Pz P1 P> and so on.

1 pi p2
P11 pa
p2 p1 1

In general , for ¢, , the determmant inthe numerator has the
same eclements as that in the denominator but with the last column
replaced by [p, p, ... p, "

On the other hand the partial autocorrelation function can be

obtained by solving Durbin's recursive formula,

pk+1_§ll ¢'k19 k1
— = e 4 N oSN
¢’k+;,k+1 - K T k=12, .. (4.2.5)

1~J§ Okj P |

and ¢k+1,j: ¢kj - ¢k+l,k+l d"k,k-jﬂ 3] = L2y < s (4.2.6)
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with starting value ¢, =p,.
The estimated partial autocorrelation can be obtamed by
replacing the estimate 1, in place of p; -

For the AR (1) process,

¢ 11 - d)l
— P
and the partial autocorrelation of order higher than onc are
5, =P~ 011p1
& 1-dup

since  p,= ¢,=p"

Now, from (4.2.6)
‘bzx :4’11 - d)zz(tn

=4,

-~ Py
and from (4.2.5)
p3—dupz—dnp
‘bza o

1—%191—4)2292
since  p, =p,, byp,= p, and d,p, = 0 wegel
¢J33 =0

In general,
b= 0, k=234, ...
It can be concluded that, the pacf of AR (1) process has a cut - off
after lag 1.
For AR (2) process, the partial autocorrelations are obatined as,
0, = ¢,
=P
0p = 9,
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_P2—¢up)
1—4)1191
p2—pi
1-p;
from (4.2.6)
by = 0, 959,
2
—p, - (27 Py,
1-pj
pi(1 - p2)
1-pf

and from ( 4.2.5)

b, = P3— 2Pz~ 9up)
s 1—¢21P1—¢22p2

where p, can be obtained by solving the Yule - Walker e¢quation

(4.2.2) for p =2 that 1s,

4.2.7)

Pe=0, Pyt 2P k=1,2,3,.
. 1- -’
with ¢, :&( ?2) and ¢; = —— p' we have
1 -pj l—p
P
Py = [2pep- Py |
1-pj

since ¢, =

It can be shown that
¢, =0 -k =3.4,5,...

by the same way.




It can be concluded that the pacf of AR(2) process has a cut ofl afier lag 2
Generally, for AR(p) process,the partial autocorrelation function ¢, will be
nonzero for k = 1, 2, . .., p and zero for k = p+1, p+2, . . .. I[n other
words, the partial autocorrelation function of AR (p) process has a cut
off after lag p. This characteristic of the partial autocorrelatom function

can be used mn the determination of the order of an AR process.

4.2.6 Partial Autocorrelation Function of A Moving Average Process

For MA(1) process, using Yule - Walker equations

*

= —

PL Pz - o . Pr —(bkl_ 'P!_‘
Pt 1 pr . L PR {12 P2
| Pkl Pk-2 Pk-3 Il dw | | px |
with p, = —@12 and p,=0, fork>1, we obtain
1 +0]
-pi
(bz:’, - 2
I-pi
_ —(—91/1+6f)
L= (=0,/1+0%)
— _ef ——a.
(1%-(3?)—9‘11
B
1+ 0+ 01
_ -81(1-67)
(1+0%+07)(1-0%
_ —0i(1-6))

1-6f



b = Pi
R

(-0,/1+61)°
1—2(=6,/1+07)?

.
(1+ 0D + 0D
_( 3 _ 62
= ~~)1—(1—~—Q and so on.
1-03
In general, we get
_ =61 -6
i Sy
1 -6,

It p, is positive so that 0 is negative, the partial autocorrelation
alteranate in sign. It p, is negative, so that ¢, is positive, the partial

antocorrelation is negrative. Thus,

Oyl < O,k, and the partial autocorrelation
function is dominated by a damped exponential and tails off.

The exact expression for the partial autocorrelation function of
MA(2) process is complicated. but if the roots of characteristic equation
(1- 6B - 6,8 = 0 are real, it is dominated by the sum of two
exponentials and if the roots of characteristic equation are complex it has
a damped sine wave.

Therefore, the partial autocorrelation  function of MA process  tails

offand is dominated by the damped exponentials and /or damped sine

waves.

The  characteristic  behavior  of  autocorrclations,  partial
autocorrelations for the three classes of processes, namely autoregressive
process, moving average process and the mixed autoregressive moving

average process is shown in the following table.
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Characteristic Behavior of ACF, PACF of AR, MA and AR MA Processes

Class of Process Autocorrelation Partial Autocorrelation
AR(p) Infinite ( damped exponentials |Finite.
; and / or damped sine waves). |Spikes at lag 1 though p,
Tail off according to then cut off.
Py = 0Pt Pt - P

MA(Q) Finite. Infinite(dominated by
Spike at lag 1 through q, damped exponentials
then cut off. and/or damped sine

waves).
Tail off.

ARMA (p,q) |Infinite (damped exponentials | Infinite (dominated by
and /or damped sine waves|damped exponential
after first q-p lags) . Irregular|and /or damped sine
paitern at lag 1 through q, |waves after first q-p
then tail off according to lags).

P ¢1pj--1+¢2pj.2+- . +¢pp ip Tail off.

Source : Box, G.E.P and Jekins, GM (1976) " Time Series Analysis,
Forecasting and Control"
Remarks : ¢, 1s the j* autoregressive parameter and

p, is thej" autocorrelation coefficient.

4.2.7 Stndard Error of Autocorrelation and Partial Autocorrelation
Estimates
Since we do not know the theoretical correlations and since the
cstimates which we compute from the sample time series will daffer

comewhat from their theoretical counterparts, it is important to have some
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indication of how far an estimated value may differ from the
corresponding theoretical value.

In particular, we need some means for judgmg whether the
autocorrelations and partial autocorrelations are effectively zero after
some specific lag q. For larger lags, we can compute the varance of

T, from Bartlett's formula. That 1s,
1 L . ,
V(rps 5 (1+22p0) 7 q (4.2.8)
=1

where N is number of observations.

In practice, the autocorrelations p  are unknown and must be
replaced by sample estimatesy. Thus, a standard error for estimated
autocorrelation r is given by

1 SEPN -
— (1 +22,1])? 1o q (4.2.9)
\/ﬁ l:‘

For partial autocorrelations, it was shown by Quenouille that (f

SE(r)=

the process 1s autoregressive of order p, the estimated partial
autocorrelations of order p+1 and higher are approximately independently
distributed.

Also if N is the number of observations, the variance of the

estimated partial autocorrelation bue is

V(M)WLN- kzp+ 1 (42.10)

Thus the standard error of the estimated partial autocorrelation $ w1

S-E($m<)~% ko2 ptl . (4.2.11)

JN
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4.2.8 Identification Techniques
The autocorrelations of a nonstationary process z, will not dic
out rapidly and this failurc to dic out of the autocorrelation function
at high lags indicates that differencing 1s required. This 15 so even
though the first two autocorrelations are not large enough. Assume
that the process z, has been differenced a sufficient number of times
as to produce the stationary process w, = (1-B) z .
(a) If w, isan AR (p), ts autocorrelations will dic out according,
to the difference equations
e B o K T S M
that is, according to a mixture of damped exponentials and /or e
waves and its partial autocorrelations will obey
¢,= 0 for k = ptl, p+2,. ..
(b) If w, 1s MA(q), its autocorrelations will obey
p, =0 ,k=qt+tLqt2 ...
and its partial autocorrelations will dic out, though nol according o
any clearly recognizable pattern.
(¢) If w,1s an ARMA (p,q), 1its autocorrelations will die  oul
according to the difference equations
I Y I X . e Lk >q
and its partial autocorrelations will also die out, though not according
to any clearly rccognizable pattern.
These three charactenstics of the class ol models can be
employed as the basis of an altempt lo identtfy an appropriale model

for suitably differenced series.
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In practice, these p 's and ¢'s are unknown and have to be
estimated from the given time series realization. Therefore, in
identifying an appropriate model, we have to rely on the samplec
autocorrelation function and partial autocorrelation function which
imitate the behaviour of the corresponding quantities. The imitation
will be better if the sample is large. Therefore, mn order to have any
reasonable success in model identification, one requires a moderately
long series of observations, In fact, we cannot be confident of the
success in identification with short series. Not lessthan 45 or 50
observations will be needed to have reasonable success in model
1dentification.

Some of the steps in model identification are
(1)  Calculate the sample autocorrelations and partial autocorrelations
of the time series.

(2) Calculate them from the first or second differences of the time
SCrics.

(3)  Falure of the sample autocorrelations to die out quickly a
higher lags is an indication that further differencing 18 needed.

(4) Having achieved stationarity by suitable differencing, attempt to
identify the ARMA or AR, MA patterns as indicated 1in (a), (b) and (¢).
(5) As a rough guide for determiming whether the autocorrelations
are in fact zero afler lag q, use Bartletts (1946) formula, that 1s, for a
sample of size N, the standard error of the sample autocorrelation r s
approxunately,

4 i
i/,%[l*ﬂzz,rj]i for k>q .
=
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Quenouille (1949) result gives the standard error of the partial
autocorrelations (f)kk for AR(p) process. The standard error is

approximately,

ek for k>p.

N

Anderson's (1942) result is that in moderately large sample, we
can assume normality of the sample estimates.

This implies that limits plus or minus two standard error about
zero can be used as a reasonable guide in assessing whether or not the
quantities are in fact zero or not.

In the identification stage of model building, we have to find
the sample autocorrelations. These can be used to find the initial

estimates of the parameters in the model.

4.2.9 TInitial Estimates of the Parameters
For an assumed AR process of order p, initial estimates for ¢,,
7=1,2, ... p. can be calculated by first substituting r, for the

J

theoretial autocorrelations p, in the Yule - Walker equations,

pj:¢lpj-l+¢2pj-2+"'+¢Dpj'P J=L2...p

and solving them.

In particular, for an AR(1) process,

d1=r, (4.2.12)
and for an AR (2) process,

¢ N -r)

0, .

2 1'2—'1'%
and 02 =



where ¢ denotes the j*

autoregressive parameler m a  process of
order p.
For MA ( q) process, 1t has been shown that the first g

autocorrelations are nonzero and can be written m terms of parameters

Gj,j=1,2, ..., q of the model as

_ —Gk + 918;“.1 + GZQ)M + ... '+Uq-—k8q
1+6%+05+. .. +03

Px yk=1,2,...,q,

- Expressing 0's in terms of p's will result in g nonlinear cquations

m q unknowns, Preliminary estimates of 6's can be obtamed by

substituting the estimates ¥, for p , in this equation and solving the

resulting nonlinear equations which can be donc only by numencal
methods, except for MA (1) model.
For MA(1) process, we have

o, =2
o146

: (4.2.13)

So an estimate .of ©, may be obtamned from
_4,
1+ 6

L,

Now thisis a qua dratic equation in 0; and has two solutions, namely,

5 g 15 1{1—41‘%

| =
21‘1

3
i

N N L(l —4r%y
21’, 21'1

:rL+1-mﬂ%
2r | @r)? |

1
1 1 :

= _ = 4 = 1
21'1 [(21’;)2 j\
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N e P
and 61: o T
1
S SR S T 2
> S (L= 4r0)
___1___‘1—4rf 2
21y (2r;)*

The only value of O, that satisfies the nvertibility condition,
~1<0, < 1, 1staken as the estimate of 0. In fact, 1t1s always true
that only one of the multiple solutions can satisfy the mvertiblity

condition, | 0 | < 1.

4.3 Estimation of the Parameters

After amodel isidentified for a given time serics 1t 1s umportant
to obtain efficient estimates of the parameters. Then the filted model
will be subject to diagnostic checks and tests of goodness of fit.

For testing of goodness of fit to be relevant, 1t 15 necessary
that efficient use of data should have been made in the fitting process.
If this is not so, inadequacy of fit may simply arise because of the
inefficient fitting and mnot because the form of the model is
inadequate. Therefore, in the fitting process, the estimation of the
parameters should be made by an efficient method.

Suppose the tentatively accepted model i1s

dB)yw=0(B)a,
where w =(1-B)z, and p,d g being fixed in the identification

stage.



To obtain the estimates of the parameters G a0, 6,0, b,
we may use the least squares method since it can be proved that the
least squares estimates are approximately maximum likelihood estimates
in ARIMA models. If the least squares, method 1s used, we have 1o
choose those wvalues of ¢'s and0's of the parameter set which
mimmize the sum of squared errors La’ obtained from the observed
time series.

There anses two difficultics in estimation stage.

(1) The equations 1nvolve unknown starling values,
(Wo, Wi, Wio,a,,a ..., a_ ) -
(1) The sum of squared errors function 1s in general nonlinear in the
coefficients to be estimated.
There are two approaches to (1).
(a) The unknown starting values are simply replaced by some appropriately
assumed values and estimation is conditional on these assumed
starting values.
(b)  The estimation is based on estimated starting values from the
sample data. This unconditional approach is more efficient than the
conditional  approach. For long series, the difference  between the

results obtamned by the two approaches is negligible.

4.3.1 Conditional Approach
The model ¢ (B)w, = 8(B)a can be wrilten as
W gw - o—gow = a - 6a, - - Uoa,

where w= (1-B)? z . Then

a, =W g w,—. .. —gw +ba, +.. .+ 0a By



Given the set of differenced observations Wi, Wo, LW A ean
be calculated from this particular set of observations using  the tentaiively
identified model subject to the specified values  w,,w . wand
A, 8., ..., 8,

The most obvious values (o choose as spectfied values of w's and
a's are their unconditional expectations namely zero. This allow the
calculation of a, t=1,2, ... .1 given the cbefﬁcients Oy Oyyt oo, 0
and 0,0,,... 0, That is,

1

a=w, = ¢ w—d,w, — . . —pw, +0a 0,2 + 40 g

Therefore, a =w,

AW, =W —b, w, — . o, w, 40, a 0,8 4+ O,a,.
Therefore, a,=w,~ ¢, w+0, a,
d n: Wn-(bl‘/vn-l—dh VVn-ZC e P\V n- p+ ela 11-1_%62a n-?i*‘ S Hq d n-q

Then, the conditional sum of squares to be  minimized is
I
S.(0,0)=2af
=1
where ¢=(¢,, 9, o9, ) and  B=( 0,6, vaw s 6

4.3.2 Unconditional Approach

In order to avoid the starting values problem, we may use the
unconditional approach to the estimation of the paramelers of  the
temporarily selected ARMA model. In this approach, unknown values
are replaced by their expectations conditional on the given dala set
and the sum of squares, S(¢, ¢ )= j,a {E, [ a1}, where E, denotes
the conditional expectation, is minimized with respect to ¢'s and O's |

That 1s, given an observed time series, the value of a; that generates




the observations is estimated by the conditional expectations given the
data. For the stationary process, these conditional expectations become
very small for t< 1-Q, where Q 1s some sufficiently large posilive

mteger and so the sum of squares to be minimized becomes,
S(¢,0)= HZHIQ {E:[a] }*. Thus, increased efficiency is obtained by
estimating the mutial values from observed time series. This is justified
by noting that the density tunction of observations given the
parameters under assumption of normality 1s

Pr(a,a,,....a)wa g(00)expl- 5 X (Flal}?)

.. q ==

where g is a function of the coefficients ¢'s and ©'s  but does not

mvolve the observations.

4.3.3 Computation of the Conditional Expectations
For any given set of parameter values, the conditional
expectation can be computed by using the fact that the two processes
d(B)yw, = 0(B) 4.3.1)
and 0IHYyw, = 0([F)e, (4.3.2)

where a; and e; are white noise processes describe the same stochastic
process 1n the sense that ¢ have the same autocovanance structure as

By expanding them, we have
W W, —gwW - - W ma-Ba - Ba - -0
and
W, — ¢)Wt+1_ ¢2Wt+z T e a d]p Wwp TayT Ola T 823 S 0 q g

since =B

If the conditional expectations given the observations are taken,
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Efwl=¢E [w ]-...—¢Elw_]=E[a -0E[a ]-.. . -0 Lol
(4.3.3)
and
Ew]-¢E wyl-- . - Elw, 1=Ela -0k e, ] -. .. -0E[e,.]
(4.3.4)
Given aset of observations w, w,,...,w, have
Efw] = w, t=1,2,...,n
Efa,] = 0 SRS
and Et[ct_j]: 0 1=1,2, ...

Using these properties, the conditional  expectation can be

computed 1ileratively. They are started by setting,
Ele ] =0 =12, ...,q

For moderately long series, this approximation has no etfect.
The wvalues of Efe] ; t=n-p,n-p-1,...,1 are then obtamned from
(4.3.4). After that the values of E[w]; t=0,-1,-2, ..., 1-Q-p can
be obtained. The mteger Q is chosen so that the condional expectations
will be neghgibly small for t< 1-Q. A reasonable rule is to stop
when three successive values of E [w] lessthan 1% of the
standard deviation of w, w,,...., w _1n absolute magnitude occur.
Finally, the values of E fa] ;t=1-Q,2-Q, .. .,-1,0.1,... . n
are obtamned from (4.3.3) , after seting E [a ]=0, t< 1-Q.

Usually, single iteration 18 enough for the computation of the
conditional expectations. For shorter time series, values of Efw];
t= n+l, nt2, ..

., can be obtamed from the (4.33) and hence

from the (4.3.4) more accurale estmates of the starting up values
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Ele, ] 1=L2,..., ¢ can be obtaned. Iteration may then

n
proceed until the sum of squares, 2 {E [a ]}® converges.
=1-Q

4.3.4 General Procedure for Calculating the Unconditional Sum

of Squares

In general, the dual set of equations, for generating the
conditional expectations E, [ a ] is obtained by taking conditional
expeclation in (4.3.1)and (4.3.2). Then we can wrilc

b (F)E [w,] = 0(F)E [c|] (4.35)
and bBYE[w ] ~0(BE[a] (4.3.6)

The first equation 1s used to generate the backwurd forecasts
E,[w,]'s and the second equation 1s used to generate thel: |a ]'s.

If we find that the forccasts are neglhgible in magntude beyond

some lead time Q, then the recursive calculation goes forward with

Ele] =0 =0, 1,2, ...
Efa,] =0 3> Q -1
In practice, the estimates E [w, ] at and beyond  some
pomt t= -Q with Q of moderate size, become essentially equal to
Zero.

Thus, to a sufficient approximation we can write
e %‘ / : p
Wt:¢ (B)@(B) at—}t,g%latgj%;o {J'Elr_.j
This means that the ornginal mixed process can be replaced by a
moving average  process of order Q and the procedure for
estimating the parameters of a moving average process may be

used .



The backward equation ¢ (IF)YE [w | = 0d)E [e,] s now
started off in preciscly the same procedure for the conditional sum of

squares and substitute E [ e =0;3=1,2,...q.

i

Then, the values of back forecasts, E [w ] are calculated recursively.
The back forecasts, E {w_];3=0, 1,2, .. dic out quckly and are
equal to zero for j>Q-1.Using Efa ]=0; 7 > Q- 1, the forward
recursion is now begun with equation (4.3.6) and the I {a |'s are computed.

The unconditional sum of squares S( ¢, 0 ) to be muunuzed
is obtained by summing the squarcs of all the calculated E [a ['s.

Thus,
SW’@):ﬁQ (B [a])?

4.3.5 Variances and Covariances of Estimates of Parameters

For the apporpriately parameterized AR (p) model, the log
likelihood will be

L=L (¢,0u0w,)~— 7 Inci+ Jiln IM_, | - 32 (4.3.7)

203
where ¢ = (¢,,¢,,...,¢,), w = (w, w,, ..., w_) and
S(o)=w M w -+ )y (w — ¢ w _ — —b W, Y (4.3.8)
TP PP epn ¢ e e protp SRR
0 4’;2) d’p %4 o E “‘bp
¢P ¢P*1 ¢§J s _¢’pr
and MPH= P o+ : : o :

0 . .0 | - g .
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" For moderate and large sample (4.3.7) is adequate, useful
approximations to the variances and covariances of the estimates.
~ The information matrix for the parametersis obtamed by

2
I(Q)Z—E{éﬁ—%&:lmn(Mp)—l .

The inverse of the information matrix supplies the asymptotic
variance - covariance mairix of the —maximum  likelihood (ML)
estimates. Moreover, if the log likelihood is approximately quadratic
and . maximum is not close to boundary, even ifthe samplesize 1s
only moderate, the elements of this matrix will mormally provide
adequate approximations to the variances and covariances of the
estimates.

If the sample size is moderate or large, the elements of variance
- covariances matrix will provide approximate variances and covariances
of the estunates.

In particular, for autoregressive processes of first and second
order

V(b)) ~n ™M,
S -4
V(d1, o)~ 0 M,

wl[ 1- ¢} —ma+¢o}.
2 —¢1(1+¢2) 1_¢§

For large samples, the vanance - covariance matrix for the
maximum likelihood estimates from a moving average process 1is
precisely the same as that for an autoregressive process of the same

order. Thus, for moving average processesof order 1 and 2 we have



V(by~ La-gry
VO, Oyl 1-00 —0,(1+0,) .
V(0 8,)~ = e P 2
(O 0 n[—el(noz) 1-0f |
For ARMA (1, 1) process,
(1 '¢1B) WL:( 1 '61 B)’dl

the variances and covariances are

1:319__[ (L=¢D(1-6:6) (1-¢H1-0%) ]
@ =00 (1-¢h1-0% (1-07)() ;,)j

The estimates of vartances and covariances of the estimated

V( d/;], él %

barameters may be obtained by substituting estimates for the parameters.
That is, we may substitute b, for ¢, 6 for 0, and 0, and 0, for o,

and 0, respectively,

4.3.6 Constant Terms in the Models and Its Estimates

If the mean ofthe differenced series W18 not zero, it needs
to represent a constant term in the model. Generally, the average of
differences of a time series over a long pertod of time  will be
approximately zero. If not, a constant term 15 to be put in the model.
Let the constant term is to be put m the model. Let the constan

term be 3. Then, the mean of the differences w,of an AR(p) process is

E(w B (4.3.9
( ) *dr‘l _¢p

indicating that the average over along period of time will be NONzZero,
An estimate of the constant lerm may be obtained from (e

relationship between the mean of the process and the other parameters




using the sample mean of the series as an estimate of the mean of the
Process.
For the AR (p) process, we have theoretical relationship (4.3.99,

from which we obtain the estimate of & given by

§=(1-¢1-...-g)W (4.3.10)
where W is the sample mean of the differences w, and b/'s arc the
estimates of the parameters ¢,'s.

The complete AR(p) model with estimates 1s then

w, = 5 + dA)l W, too q;pw[_p +a
For the AR(1) process,

S
1-¢)

where W 1sthe sample mean of w, and ¢, 1s the estimate of the

E(w,) = and 5= (1-¢) w

parameter ¢, .
Then,a complete AR (1) model with estimates by and 3 s

w,= O+ ¢y w, +oa

For the MA(q) process, we have theoretical relationship

E(w)=29 "
Denoting the sample mean of the differences w, as w, we have
then

S=w- (43.11)
The complete MA(q) model with estimates 1s then
W, = 8+a[—é1 a,—...— éqal_q
where 6j's are the estimates of parameters 8;' s,
For the MA(l) process,
E(w)= & and §=w

where w 1s the sample mean of the differences w, .



Then, a complete MA(1) model with estimates é; and & s

w, = 0+a, —0a,

4.3.7 An Approximate Standard Error for w
In the general ARIMA model, the mean pu of w,o= VeEzas

not zero, it may be written as

b(B) (w,—p, )= 0(B) a,

or 0 B)w,=3+0(B) a,
S
where =
S T Y
If 1-¢,- 0,~...~¢ # 0, p, implies thatd = 0. In general,

when d=0, p_ will not be zero.

At the identification stage of model building, an indication of

whether or not a nonzero value for i, 1s needed, may be obtained
by comparison of W=Zw/n with its approximate standard error.

With n=N-d,
siw)=n'y,% p

=n" T (4.3.12)

Since the covariance generating function is
= AT
k=-

the equation (4.3.12) becomes

o’ (wW)=n'"y () (43.13)
with B=B"' =1
Consider for the (1,d,0) process

(I =0 B)y(w -pn,)=a,



with w = V'z . Since the covariance generating function is

o}

N (R 1) B

from the equation (4.3.13), we get

2
1 Ca

R T ST TR

=nt(1-¢,V 06/
with B=B"' =1
But,
o= (1-¢7)0, ,
so that
— 2
ciw) = n’ (EL.)? 3
(1—0,)°
o (1+41)
n U—(bl/J
and we get,
L+ |2

AR vrurey

Now o, and ¢, are estimated by c and 1, respectively,

where
~ %
r, — C_o §
1 =K
c, = ﬁz (W= W) (wWpg — W)
t=1
and ¢ Zli(w—’ﬁ?)2
0 n 1 t :
1=
The 1 1s the estimate of the autocorrelation p, and ¢, is the

estimate of the autocovariance vy, .




Thus, for (1,d,0) process, the required standard erroris

ce(1+1)]

S (W) :{n(lérl)J
with 1, = .

Similarly, for (0, d, 1) process, the expression for 6(w) may
be obtamed as

i
"o Co (1+2r))]2
R e
4,
1+ 6

with 1, =

4.4 Model Diagnostic Checking

After the model has been fitted to the observed time series
( that 15, a model or models have been identitied and parameters
have been estimated )it i1sto decide whether the model 1s adequate or
not. If itis adequate, it can be used for forecasting. lf not, the model
isto be modified. It, then, isneededto discover in whal way the
model is inadequate. This will help m finding out the appropriate
modification.

One method of checking the adequacy of the model s to
overfit. That 1s, to consider a more general model. This can mdicate the
direction in  which the model 1s mnadequate. This method 18 to be
supplemented by checks applied to the residuals from the fitted
model. All these will allow the data to suggest modifications to the

model.
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4.4.1 Overfitting

 Having identified what is believed to be acorrect model, fit a
more elaborate one. That 15,  additional terms are taken into the
model, especially from the direction in which the model is inadequate.
FFor example, if the 1dentifiedmodelis ARIMA (0, 1,1), the modelis
Vz,=(1-0B)a,. Suppose 6, is estimated as 6, . The tentatively
accepted model 1s Vz = (1 - é;B) a . Possible extension isto consider
the model, Vz,= (1-90,B-0,B*)a, and fit it to the data. For the

extended model, the residual sum of squares i1s to be found and

compared with the residual sum squares of the previous model.

4.42 Diagnostic Checks Applied to Residuals

The  method of overfitting by extending the model in a
particular direction needs to assume what kind of discrepancies are to
be feared. Procedures less dependent upon such knowledge are based
on the analysis of residuals. Visual inspection ofa plot of the residuals
themselves i1s an 1indispensable first step in the checking process.

Box and Pierce ( 1970 ) have suggested the statistic
K
Q=n(n+2) 2 (n-k)
kel

where n= N-d 1s the number of w's used to fit the model and

koo,
?—I at Ak
L= E
k n,s
> a
t=1
is the lag k sample autocorrelation of the estimated residuals (&'s ) and

k is the maximum lag considerd. If the models were appropriate
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and the parameter were known, for moderate or large n, Q is distributed as
% - since the limiting distribution of r=(1,, .. ., r})' is multivariate normal

with mean vector zero ( Anderson, 1942; Anderson & Walker, 1964),
var (1, )=(n-k)/{n (n+2)} and cov (r,r;)=0(k##j).

Results by Anderson & Walker (1964) show that the asymptotic
normality ofthe r, 's does not require normahty ofthe a's, only
that var (a, )is finite. The overall test might be expected to be
insensitive to departures from normality of the a's.

Using further approximation, that is, var (r, )= l/n, the overall

test for lack of fit ofthe model proposed by Box and Pierce (1970)is

the Portmanteau lack of fit test. The test statistic 1s
134 2.
Q=n E Iy .
k=1

The test statistic Q is distributed as y °. Furthermore, they showed
that when the p+q parameters of an appropriate model are estimated,
Q would for large n be distributed as y ,°,, where pandq are
numbers of autoregressive and moving average parameters, respectively.

Ljung and Box (1978) suggested the statistic

Q =n (n+2) f:rsz (n-k )
k=1

whose distribution appears closer to that of 2 .~ for finite samples.
They computed 1, as

n-k

n ~

ar Apk




assuming that E{a } =0. We use the definition,
S N 7
2 (ar—a) (aux—a)

s

N A N .
Zl (ay— a)?
=

to calculate Q, since some of the a's have non - zero means.
If Q<u,, »then, a'scanbe taken tobe independent and it

in turn implies that the selected model is adequate.

)

4.4.3 Some Other Tests for the Adequacy of the Model
To check whether the order ofthe fitted model 15 adequate, the

Akaike Information Crnterion (AIC) can be used. Suppose that the true

process from which the observations z (t =1, 2, ..., n) are generated is

a k" order model with parameters¢'=($ .d,, ....¢,.0.....0)and

o.? . It should be noted that

b = (., bu,a, . 0) ck=1,2,.. p

and
a(lf) - Z {Zt ¢k] Zp]'...-d‘)k};Zpk}z ',kt: 1, )

t-p+l

arc consistent, asymptotically normal estimates of ¢' and &° forany

k2 k,(Anderson, 1971).
With  Akake's method (Akake, 1969,1970), we select the order

for which
AIC(m)=nlog &Z(m)+ 2m ,m =0,1,...,p
where n = number of observations,
0= estimated varlance of the residuals and

m = total number of esimated parameters,

aftamms its muumum as a function of m.



This method balances the nsk due to the bias when alower
order is selected and the risk due to the increase of varance when
a higher order is selected. It 1san open problem to seek an accurate
evaluation of this balancing behaviour in other situations, such as
when the sample sizes are small or the order k,, p and the
parameter ¢ are not fixed as n — oo .

The FPE criterion suggested by Akake (1969, 1970) for the

estimating order m 1s

FPE (k) = & (1+k/n) (1-k/n)’ (4.4.1)
=62 (142kn)+ O (n %)
where
Gk:fll é{ZI —duzii— . w2 k),
and dA)ki (1=1,2,...,k)are the least squares estimatcs of the

autoregressive coefficients of order k . Here, assume that mis fimte and
bounded by some positive integer p where p 1s known. If the terms
of O (n?)are ignored, then the 'PE cnterion may be regarded asa
special case of amore general criterion

FPE(k) = 6£(1+ ak/n)

where o is afixed positive constant. The order m may be estumated

by m , where
FPE (m) =i1;f FPE | (k) ke il2e . @
The FPE_(k) criterion is also related to an alternative FPE P (k)
criterion suggested by Akaike (1970), since for 0<f <1
FPE * (k) =6§( 1+km? ) 1-k/n)'
=FPE, (k) +O(n %)

for a=1+n"".
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The main advantage ofthe FPE_ (k) criterion 1s that 1t balances
the nsk of bias due to selecing a lower order model with the
merease 1n  prediction vartance due to selecting a higher order
autoregression, in a slightly more general manner than (4.4.1).

Letting n — «, Bhansah and Downham (1977) showed that the
greater the value of o , the greater 1sthe probability of fitting the
correct order and the smaller 1s the probability of overfitting,
Morcover for o > 1, the probability of fitting the correct order is
greater than a positive constant, which 1s independent of p and which
tends to 1 as o — o . Therr results also showed that tor « < 1 the
probability of selecting an order greater than the true order s
nonnegligible and the probability of selecting the true order 1s close
to zero for p>m . The latter resull 15 also true when o = 1
Therefore, a choice of @ < 1 1s unlikely to be satistactory . They said
that in practice n 1s finite and the finite sample properties of the
FPE _ (k) criterion are difficult to derive analytically.

There exists other functions forthe purpose of choosing the

order of amodel. Hannan and Qunn (1979) proposed that
HQ=nlog (6% )+2mlog (log n),

be used as a criterton in the determination of the order of a model.Geweke

and Meese (1981) also proposed the Baysian Information Criterion (BIC)
BIC = n log (6% ) + mlog (n)
and Akake (1970)s Fmal Prediction Error (FPE) 18

BIC = (M _ )& (T,

n - N—1m-



In each case, the model which mimumzes the functionis chosen

m the fitting. Inthe fitting of a model to atime series, the model

which gives the lowest value of each of - these onteria 15 to be

chosen as the best fitted model.




CHAPTER V¥

STOCHASTIC MODELS FOR
SOME TRANSPORT TIME SERIES OF MYANMAR

5.1 Introduction

It 1susual to find seasonal indices asa measurc of seasonality
Ina time series by various methods. This is done under  the
assumption that atime series is composed of trend, seasonal, cyclical
and random variations if they exist. Trend and cyclical components
are tepresented by  deterministic time functions, seasonal component
by seasonal indices and  random component by ils statistical
properties. Later developments in Time Series Analysis made it
possible to represent a time series by a stochastic model which
explains all types of variation in the time series as having  been
generated by different kinds of random processes.

Box and Jenkins ( 1976 ) proposed a class of stochastic models
for representing a time series. They also developed the model
building procedure for these models. Their model building procedure
is closely followed in finding appropriate models for some transport
time scries of Myanmar in this thesis. The series for which
stochastic models will be built up are:

(1) Airways ( freight 1b) serics,
(2) Airways (number of passengers ) serics,
(3) Railways ( freight ton ) series and

(4) Inland Water Transport ( freight ton) series.
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For these series, suitable stochastic models will be found in the
following sections. Steps followed in model building of these series

will also be explained.

5.2 Steps Used in Model Building

The following steps are used in finding a suitable model for
some transport time series of Myanmar.
(/) Identification : In the class of ARIMA model, suitable model or
models for the transport time series of Myanmar under consideration
will be identified.
(#) Estimalion . Parameters mvolved in the identified model or models
will be estimated from the respective time series data,
(ifi) Diagnostic Checking : Adequacy of the fitted model or models
will be checked by using appropriate test.

The detail procedures in carrying out these steps are as follows:
(a) First of all, it needs to decide the class of model and the
appropriate order of the model to be fitted. This is done by
examining the sample autocorrelation and partial  autocorrelation
functions of the time series.
(b) In fitting the tentatively chosen model or models, the model
parameters have to be estimated from the time series data. Maximum
likelihood method of estimation is used 1in finding the estimates.
(¢) Fromthe fitted model or models, the residuals are computed. The
Portmanteau lack of fit test isused to decide whether the residuals
of the model can be taken as asample from the random seres. If

so, the model will be accepted to represent the given time series. If



not, the model will be modified and fitted again. Procedures (b) and
(c) will be followed.

This  procedure will be used in building stochastic models for
the transport time series under consideration. In section 5.3 to 5.0,
the model building  proceduresare explained for each of the four

transport time series.

5.3 Stochastic Model for Aitways ( Freight Lb) Series

The monthly data of Aways (freight Ib) series cover 7 years,
from January, 1989 to December 1995 The series consists of 84
observations. The nature of the series and seasonality were discussed
in chapter 1. In this section, choice of a suitable stochastic mode] for
this series using the model building procedure discussed in section

(5.2) will be explained.

5.3.1 Identification

For this series, sample autocorrelations are found for
(a) the original series, z,

(b) the series differenced with respect to months only, Vz,

(¢) the series differenced with respect to years only, V2,

(d) the series differenced with respect to months and years, VV, 2,
and are shownin Table A 5.1 of Appendix A. They are displayed in
Figures B 5.1 toB 54 of Appendix B along with the confidence
limuts calculated as

r.t 2SE () (53.1)

where r and S.E (r,)were calculated as in equations (4.2.1) and (4.2.9),



The sample autocorrelations of the original series show slow
decay and indicate the need to difference the sercies. Sample
autocorrelations of Vz, show that the lag 12 sample autocorrelation lies
outside the confidence limits. Sample autocorrelations of V 2z are
mostly inside the confidence limits except at lag 1. But, sample
autocorrelations of VV 2 show that the series has been over differenced .

Thus, V,z istaken to be fitted by an ARMA model.

We also find the sample partial autocorrelations b (k=1,2, ... ,24)
for V .,z series. ¢y and respective confidence lhmits are shown m

Table AS.5 and displayed in Figure B 5.17. The confidence hmits
for ¢,, are calculated as
b t 2 SE (du) (5.3.2)

where ¢y and Sf.\E(cf)kk) are caloulated as in cquation (4.2.3) and

(4.2.11). From the nature of the sample autocorrelations and partial
autocorrelations, it is concluded to take p=0, q~ L. That 15, the
two together suggest that the seric V .z, might be deseribed by MA
(1) model,

w=8+a,-ba, (3.33)

where w,=V,z = 2z, -2z ,,and & isa constant term. That 1s,
2‘126+Zt-12 + al_e\ a,,

The initial estimate of parameter 0, is obtained by substituting the sample

estimate r, = 0.32 in place of p, mn (4.2.13). The mitial estimate  of
0, so obtained 1s f,=— 036 . The preliminary estimate of the
constant term is from (4.2.15), 8=w =-0.7917. So, the tentatively

chosen model using preliminary estimates 1s

w, =-07917+a,+036a, (534)
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3.3.2 Estimation

In estimating 0, of the model (5.3.3), the unconditional sum of
squares for 8§(0,)is used. The valuc of the sum of squarc§ function
S$(6,) under.the model (5.3.3) is calculated from the series for different
admissible values of 6,, with an interval of 0.05 where - 1 <6, <1
and are shown in Table A5.9. Minimum value of S(él) occwrs at
0, =~ 0.35. When $(6)) 1s calculated for 6, =— 0.35 to - 0.30, with

an interval of 0.01 the minimum value of ' 8$(0,) is obtained at
==0.33. The estimate of 6, is taken as §; =— 0.33 since it yields
the lowest $(0,) value for ~ 1<, < 1.

For large sample, the estimated variance of 0, is \}(él) s (1 - éf).
For 6, =-0.33 and n=72, we obtain V(0:)~0.0124 and the
estimated standard error S,.\E (él) ~0.1114. The estimated standard

error of § is 23.78 . Then the model (53.3) with likelihood
estimates is,

w,=—0.7917 +a,+0.33 a_, (5.3.5)
(23.73) (0.1114)
where w, =z ~z,. Thus, the model for z is
2=-07917+2z,+a+0334a,
From, the model (5.3.5) the estimated random shock valucs arc
calculated as .

&= 07917 +w,-0.33a_, (35.3.6)
where w, = z -2z, and are shown in Table A 5.13.
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5.3.3 Diagnostic ‘Checking :
The estimated autocorrelations of the a; are calculated and
arc shown 1n Table A 5.17, along with the confidence interval

calculated as
1 a)t2SE [rk(ét)] (5.3.7)

where S/.\E [re(ar)] = ﬁ .

All the sample autocorrelations of a, lie inside the confidence
limits and hence the autocorrelations of a, can be taken asnot
significantly different. from zero.

An overall check is performed by using the test statistic,
Q=nk§l Ti(ar) (53.8)

which is approximately distributed as y* with k-p-q degrees of freedom.

48

> 1i(a;) is obtained as 0.451 . The observed value of Q is thus
k=1

72 x0451=32472 and %° with 47 degrees of freedom are 67.5
and 7142 at 5% and 2.5% significient levels, respectively.
Therfore, Q <y?, at both levels of significance and the model
1s found to be appropmate. The model (5.3.5)1s chosen to represent
the series differenced with respect to the years only, that is, V7.
5.4 Stochastic Model for Airways ( Number of Passengers ) Series
The monthly data of Airways ( numb& of passengers ) series
covers 7 years, from January, 1989 to December, 1995. The seres
consists of 84 observations. The nature of the sertes and seasonality

were discussed in chapter 1. In this section, choice of a suitable
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stochastic model for this series using the model building procedure

discussed in section ( 5.2 ) will be explained.

5.4.1 Identification

For this seres, sample autocorrelations are found for

(a) the original series, z,;

(b) the series differenced with respect to months only,Vz,

(¢) the series differenced with respect to years only, V, 7

(d) the series differenced with respect to months and years, VV, 2

and are shown in Table A 5.2 of Appendix A. They are displayed in
Figures B55 toB 5.8 of Appendix B along with the confidence
limits calculated as in ( 5.3.] ).

The sample autocorrelations of the original series show slow
decay and indicate the need (o difference the series. Sample
autocorrelations of  Vz, show that sample autocorrelations  for lags
12,24,36 and 48 are still considerably , relatively high although
they lic within the confidence limits As to the sample autocorrelations
of V7 lag 12 sample autocorrelation lics outside  the confidence
lmits and at some lags, sample autocorrelations lie  outside the
confidence limits or relatively high.  On the other hand, sample
autocorrelations of VV,, z, although some of them  lie outside the
confidence limits, sample autocorrelations at lag 24, 36 and 48 gre
very small. Besides, sample autocorrelations have a dechning pattern,
two possible models are then considered. AR(1) model to be fitted

to Vz, or AR(1) model to be fitted to VV,z .
We also find the sample partial autocorrelations gy, (k = 1, 2,...,24)



for VV,z series. ¢w and confidence limits are shown in Table A 5.0
and displayed m Figure B 5.18. The confidence limits  for dy are
calculated as in ( 5.3.2).

From these values, we fit AR (1) model
w o= dta -+ W (54.1)
where w =Vz = z -2

or w,= dtato W

V!
=
-2

L-1

where w = VV.z2 =z -2 -7,+72 and O 18 a constant term.

13

That1s ,

N

WS otz bz s aha o W

Model (5.4.1) 1s fitted and 1its adequacy is checked by
Portmanteau test, the model 1snot accepted. Model (542 is fitted
as follows and when ils adequacy 1s checked. the model is
accepted.

The mitial estimate  of parameter ¢, of model ( 542 ) is

obtamned by substituting the sample estimate v, =—0.53 in(4.2.12),
The initial estimate of ¢, so obtained is ¢, =~ 0.53. The prelimimary
estimate of the constant term is from (4. 2.14), S = —0.1509. So,
the tentatively chosen model using preliminary estimates is

w,= —0.1509 +a -053 w | (5435

5.4.2 KEstimation

In estimating ¢, ofthe model (5.4.2), the sum of squares for

\

S{(¢) 1s used. The value ofthe sum of squares function under the

i

model (5.4.2 ) 1s caleulated  from  the seriesfor differemt admissible




values of ¢, with an mterval of 0.05 where — 1= ¢, = 1 and are shown

m  Table A 5.10. Mmimum value of S ( ¢, ) occurs at §, — — (.55
When S( ¢,) 1s caloulated for ¢, = —0.50 to - 0.55, with an interval
of 0.01 the mmimum value of S (¢) is obtained at ¢ = - 0.53,
The estimate of ¢, 1s taken as¢; —— 0.53 since it yields the lowest
S(¢,) value for—1<¢, < 1.

For large sample, the estimated variance of b, is
\ﬁf(_c/]h_)mn“‘(J—({)f). For (};[:—0.53 and n = 71, we¢ o obtain

" P . 2 . A - 3 Triy
V(o)=~0.010land estimated standard error S.E (¢)~ 0.1005. The
estimated standard error of & 1is 1.0366 . Therefore, the model (5.4.2)

1s then

w, = = 0.1509 +2a - 053 w (5447

(1.0366) (0100

)
From the model (54.4 ), the estimated random shock wvalues are

calculated as

A= 01509 + w, - 053 w (5450

t-1

where w, = 7, —72,—7,+7%,, and are shown in Table A 5. 14,

5.4.3 Diagnositic Checking

The estimated autocorrelaions  of the a, are  calculaled and are
shownin Table AS5. 18, along with the confidence mterval caleulated
asm (53.7).

All the sample autocorrelaions of' 4, lic inside the contidence
Iimits and hence the autocorrelations of &, can be taken  as not
significantly different from zero.

An overall check 1s performed by using the tesl statislic, in

(5.3.8) which 1s approximately distributed as y° with k-p-q degrees of
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48

freedom. 2, r2(4;) is obtained as 0.7732. The observed value of Q
k=1

is thus 71 x0.7732=354.8972 and ¥’ {vit.h 47 degrees of freedom are

67.5and 71.42 at 5% and 2.5% significient levels, respectively.
Therefore, Q < y°,, at both levels of significance and the model

is found to be appropriate. The model ( 5.4.4 )ischosen to represent

the series differenced with respect to the months and years, that i V52,

5.5 Stochastic Model for Railways ( Freight Ton) Series

~ The monthly data of Railways ( freight ton ) series covers 7
years, from January, 1989 to December, 1995. The series consists of
84 observations. The nature of the series and seasonality were discussed
in chapter 1. In this section, a suitable stochastic model for this series
will be found by using the model building procedure explammed in

section { 5.2 ).

5.5.1 [Identification

For this series, sample autocorrelations are found for
(a) the original series, z,
(b) the series differenced with respect to months only,Vz,
(c) the series differenced with respect to years only, V,,Z
(d) the series differenced with respect to both months and years,VV z,
and are shown in Table A 5.3 of Appendix A. They are displayed
Figures B 5.9 toB 5.12 of Appendix B along with the confidence
limits calculated as in (5.3.1)

Sample autocorrelation of the original series show slow decay and

are oscillating and indicate the need to difference the series. Sample



autocorrelations of Vz, show that they are still relatively high at lag 12,
24, 36 and 48 . The same 1s true for V,,z . But they are relatively lower
for the V V,z series. All of these sample autocorrelations of V V .z
series lie inside the confidence limits except atlag 12,

We also find the sample partial autocorrelations
b (k=1,2, .. ,24) for VV,z serics. b and respective confidence
limits are shown in Table A 5.7 and displayed in Figure B. 5.19. The
confidence limits for ¢, are calculated as in (5.3.2). Most of (}}H(lics
within the confidence limits except at k = 3 and 24. Besides (f)kk tor
k=13 to24 are mostly less than b for k=110 12. The averall

g

pattern of ¢y can be taken as decreasing, over the whole range of k
after k=12
The two together suggest that the series V V7o mught  be

described by seasonal MA(1) model,

(W)

w,=06+a -0, (35.1)

where w, = VV, 2, = 2, — 7,,— 7., ¥ 7, and & 15 a contant term. That1s,
4= Ot 7, — 2., 7,5t a - ®,a

1 1-12

The initial estimate of the parameter @, 15 obtamnd by substituting

the sample estimate r,, = — 0.37 in the place of p, mp,= - The
- ) B BN ) Iy
o

initial estimate of ®, so obtamed 18 &, =044 _ The  prelmmmary

estimate of the constant term is 3=-14225 . So, the (lentalively

chosen model using preliminary estimates 1s

w,=— 14225 +a, — 044 a_,

wn
_hn
[



5.5.2 Estimation

In estimating ®, of the model ( 5.5.1) , the unconditional sum
of squares for S(®))is used. The value of the sum of squares function
S(®,) under the model ( 5.5.1) is calculated from the series for
different admissible  values of ©,, with an interval of 0.05 where
-1<®,<1land are shown in Table A 5.11. Minimum valuc of $(®,)
occurs at ® = 0.75. When §(®)) is calculated f01]* 0.71 to 0.77
with an interval of 0.01, the minimum value of $(®,) is obtained at
®, =0.75. The estimate of ® istakenas ® = 0.75 since it yiclds
the lowest § () value for - 1< © < 1.

For large sample, the estimated variance of ®, ig
v(@;)wn"(l—@f). For &, =075 and n = 71, we  obtain
V(©,)~0.0062 and the estimated standard error S.E (€,)~ 0.0787.
The estimated standard error of & is 2.6514. Therefore, the model
(5.5.1) 1s then

w, =~ 14225 +a -0.75a, (553)

(2.6514) (0.0787)

Irom the model (5.5.3) the estimated random shock values are

calculated as
a, = 14225+ w,—0.75a, (5.54)

where w, =z, -z, -2, +z, and are shown in Table A 5.15.

5.5.3 Diagnostic Checking
The estimated autocorrelations of the a, are calculated and are

shown in Table A 5.19, along with the confidence interval caleulated

asin (5.3.7).



All the sample autocorrelations of  aslie mside  the confidence

limits and hence the autocorrelations of a, can be taken as nol
significantly differenl from zero.

An  overall check is performed by using the test stafishe n
(5.3.8) which is approximalely distributed as v with k- p - g degrees
of freedom. I‘k(dt) is obtained as 0.4979. The observed value of
Q 1s thus 60 *(04979 -29874 and y® with 47 degrees of [reedom
are 67.5and 71.42 at 5% and 2.5 significant levels, respectively.

Therefore, Q < %, at both levels of significance and the model
is found to be appropriate. The model (5.5.3) 1¢ chosen to represent

the series differenca with respect to the months and years, that 1s, VV, 2, .

5 6 Stochastic Model for Inland Water Transport {Kreight Ton) Series
The monthly data of Inland Water Transport {(fraight  ton)
series  covers 7 years, lrom January, 1989 (o December, 1995, The
serics consists of 84  observations. The nature of the series and
seasonality, were discussed 1n chpater 1. In this  section, a suitable
slochastic model for this series will be found by using the model

building procedure explained i section (5.2

5.6.1 ldentification
For this series, sample autocorrelations functions are found for
(a) the original series, 2,
(b) the series differenced with respect (o months only,Vz,
(¢) the series differenced with respect to years only, V.2,

(d) the series differenced with respeet o both months and years, VV 7,



and are shownin Table A 54 of Appendix A. They are  displayed n
Figures B 5.13 to B 5.16 of Appendix B along with the conhdence
limits calculated as m (5.3.1).

Sample autocorrelation of the original series show slow decay and
are oscillating and indicate the need to difference the series. Sample
autocorrelations of Vz and V V7 have acutoff atlag I and all the
sample autocorrelations of V7 lie inside the confidence  linnts,

We also find the sample partial autocorrelations (ijkk (o1 202
for V V,,z, series. b and respective confidence limits are shown in
Table A58 and displayed in Figure B 5.20 . The confidence hmits
fortﬁkk are caluclated asn (5.3.2).

Based on these values, two models are considered. MA (1) model

isto be fittedto both  Vz and V V,z . Thal s,

w, =0+a -0 a, (5.6.1)
where w,=Vz=2- 7,
or w,=3+a -0 a, (5.6.2)

SR vy f = YV \/ b == '
where w =V V,2=2- 2

o Yy T 7y, and O 1s @ contant term. Thatas,

2, =0+ 2+ 7~ 2 st A~ 0, a,

When the model (5.6.1) 1s fitted and checked for its adequacy, 1t
is not accepted. Model (5.6.2) is fitted as follows and when checked,
it is accepted.

The initial estimate of the parameter 0, 15 obtaind by substituting

the sample estimate 1, =— 0.45 inthe place of p, m (4.2.13) . The

initial estimate of 0, so obtained is 0, = 0.63 . The  prelmmary
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estimate of thé constant term is from (4.2.15), 5=w=-06479. So,

the tentatively chosen model using preliminary estimates is

w,=—0.6479 +a —0.63a, (5.6.3)

5.6.2 Estimation

In - estimating 6, of the model ( 5.6.2), the unconditional sum
of squares for S(6,) is used. - The value of the sum of squares
function S(0,) under the moedel ( 5.6.2) is calculated from the
series for different admissible values of 6, with an interval of
0.05 where -1 <0, <1 and are shown in Table A 5.12. Mmimum.
value of S(6,) occurs at 6, = 0.45.When S(0,) 1s calculated for 0, = 0.40
to 0.45 with an interval of 0.01, the minimum value of S(0,) 1is

obtained at 6, =0.43. The estimate of 6, is taken as 8, = 0.43
since it yields the lowest $§(8,) value for —1<0,< 1.

- For large sample, the estimated variance  of 0, is
V(6,)~n~'(1-6%). For 8, =0.43and n= 71, we obtain V(6,)~0.0115
and ‘the estimated standard error SE (0,)~0.1079. The estimated
standard error of & is 1.1928. Therefore, the model (5.6.2) is then

w,=—06479+a -043a (5.64)
(1.1928) (0.1079)
From the model (5.6.4), the estimated random shock  values are
calculated as
a = 0.6479+w, +043a, (5.65)

where w,=z - 7,—7,,+z,and are shown in Table A5.16,



3.6.3 Diagnostic Checking
The estimateds. athcorrelaﬁons of a are calculated and are shown
i Table A 5.20, along with the confidence interval calculated as in(5 3 7).
All the sample autocorrelations of g lie inside the contidence
limits and hence the autocorrclations of a can be taken as not
significantly different from zero.

o

An overall check is performed by using the test stutistic in (5.3 .85

which is  approximately distributed as y2 with k-p-q degrees  of

<3
freedom. 3" r/(a,)1s obtained as 0.5143. The observed vidue of Q 15 thus
k=1 '

71 x0.5413 =36.5153 and 42 with 47 degrces of frecdom arc 67.5
and 7142 at 5% and 2.5 significant levels, respectively.

Therefore, Q < x"? at both levels of significance and the mode]
15 found to be appropril:ﬁe. The model ( 5.6.4 ) is chosen to represent the

series differenced with respect to the months and years, that is, VV 19z,

5.7 Forecasting

[n the previous sections of this chapter, models for the Arrways
(freignt 1b), Airways (number of passenger), Rallways (freight ton) and
Inland Water Transport (freight ton) series have been identificd, estimated
and checked for adequacy. The accepted models will be used o toreest

the values for January to December of 1996,

Airways (Freight Lb) Series
The accepted model for this series covering January, 1989 to
December, 1995 ig

wi=-0.7917+a+033a,,
(23.7%) ©.1114)



Using this model the forecasts for January to December, 1996 are as
shown in Table (5.1).

Table 5.1
The Forecasts for January to December, 1996 of
Airways (Freight Lb) Series
| (thousand 1b)
Jan 187 May | 268 | Sep | 244
Feb | 250 Jun 182 | Oct | 321

Mar | 655 | Jul | 255 | Nov | 245 |
Apr | 560 | Aug | 223 | Dec | 298 |

Airways (Number of Passenger) Series
The accepted model for tlus series covering January, 1989 to
December, 1995 1s

wy- - 0.1509 + a- 0.53 wy,

(1.0366) (0.1005)

Using this model the forecasts for January to December, 1990 are as
shown in Table (5.2).

Table 5.2
The Forecasts for January to December, 1996 of

Airways (Number of Passenger) Series
(thousand ton).

= 1
|
|
|
|
|
|

Jan 63 May ] 60 Sep | 5l
Feb | 60 | Jun | SO | Oct | 57
Mar | 65 Jul 52 | Nov | 60
Apr 62 Aug 51 | Dec | 63

Railways (Freight Ton) Serics
The accepted model for this series covering Januwy, 1989 to
December, 1995 1s
W= -1.4225 +a-0.75 a.
(2.6514) (0.0787)
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Using this mode! the forecasts tor January to December. 1996 are ac

shown in Table (5.3).

Table 83
['he Forecasts tor January to December, 1996 of
Railways (Freight Ton) Series

( 11_1 I\."Ii_l_li_'\_m )

CJan [ 234 [ May | 200 [ Sep | ¥

D Feb | 220 | Jun | 191 | Oct | 200
S Mar | 230 | Jul | 188 | Nov | 217 |
;_@ggl 295 | Aug | 190 | Dec | 235 |

inland Water Transport (Freight Ton) Series
The accepted model for this series covering January, 1989 to
December, 1995 1s
wi=-0.6479 +a -0.43 a,
{1.1928) (0.1079)
Usmg this model the forecasts for January to December, 1996 we as

shown mn Table (5.4).

Table 5.4
The Forecasts for January to December, 1996 of
Inland Water Transport (Freight Ton) Series

B ( in Million )
| Jan | 286 | May | 278 | Sep | 233 |
| Feb 267 Jun 247 Oct 248 1
Mar 302 Jul 272 | Nov | 234 ’

]

Apr | 278 Aug | 247 | Dec | 246




CONCLUSION

In the foregoing chapters, we have presented basic statistical
characteristics ol some monthly transport time series of Myanmar such as
Alrwavs (freight [b), Airways (number ot passengers), Railwavs (freight ton)
and Inland Water Transport (freight ton) senies and the model bulding
procedures for these series,

Morcover, the traditional methods of seasonal measurement were also
discussed. Some methods are quite simple and easy to perform and others
are quite lengthy and complicated. Some methods are valid under the
additive model and some under multiplicative model. The investigator has to
choose a suttable method to fufil his own purpose for scasonal measurement.
Baside these methods, the seasonality can be measured by using the
methods such as harmonic representations and spectral methous.

As an alternative to these methods, stochastic seasonal models such as
seasonal AR models, seasonal MA models, seasoanl ARMA models and
general multiplicative seasonal model can be used. They were also discussed
together with their characteristics.

At the begining. we choose six monthly transport time senes such as
Airways (freight 1b), Airwavs (number of passengers). Railwavs ([reight
ton). Railways (number of passengers). Inland Water Transport (freight ton)
and Inland Water Transport (number of passengers) series. 'or these ume
series. model building procedures were developed in detail.  Since ready
made computer software was not available to us, it took a long time to build

up computer programs and run them. In the estimation stage. maximum



Lrelihood method was used and conditional sum of squares had to be
wnimized.  This differed according to the model identified and a separate
computer program had to be worked out.  Since the tunction 1o be
inimized was nonlinear, the values of the function for dillerent values of
‘he parameters in the admissible range had to be found. 1o save the time
and work. this was done for the parameter values with two decimal places at
he interval of 0.05. The program was ran again for parameter values with
wo decimal places at the interval of 0.0laround the minimum point. In
Joing so. the minimum point was obtained only for five series out of the six
series considered. Thus. stochastic models were [ied to five series namely.
Airwavs (freight 1b). Airways (number of passengers), Railwavs (freight
ton). Railwavs (number of passengers) and Inland Water Transport (freight
ton). But when diagnostic check was applied. the fitted models for four
series were  only accepted.  Thus. model fitting for only four series were
discussed i this thests.

IMA model was found to be suitable” for Airways (treight 1b)
series and Inland Water Transport (freight ton) series. Series obtained bv
differencing with respect to vears for Airways (freight Ib) sernes and
differencing with respect to months as well as vear for Inland Water
Transport (freight ton) series were fitted with these models and were tound
to be adequate by using a diagnostic check.  ARI model for Airwavs
(number of passengers) series and SMA model for Railwavs (treight ton)
series were found to be suitable to represent the series ditterenced with

respect to months as well as vears for both  Airways (number of



passengers) series and Railways (freight ton) series. The accepted models
tor the four series were then used to find forecasts for each series tor the
period. January to December, 1996. The forecasts clearly show the seasonal
variation, experienced by each series.

The objective of model fitting to a time series is to usc the model for
forecasting. One has to choose a model from a set of suitable models and
this 1s done by comparing their forecast performance.  Due to lack of time.
we are not able to assess the forecast performance of our fitted models
compared to other models. Besides, there exists other models and methods
which will be interesting to explore if time permits and 1 computational

nazards can be avoided.
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APPENDIX = A




Table A 1.1
Anrways ( Feright Ton) Scrics

(In Thousand)

Month 1989 1990 1991 1992 1993 1994 1995
199 212 264 175 4206 328 187
201 171 276 703 744 294 250
282 539 200 796 984 506 655
662 496 205 185 734 791 360
155 280 162 218 327 528 268
118 398 568 409 230 196 182
166 201 202 239 254 523 235
135 197 167 243 212 260 223
230 428 207 157 263 257 244
192 248 2035 289 244 220 321
858 899 225 266 236 247 245
547 88S 496 295 337 248 298

: Central Statistical Organization (C. S O.)

Table A 1.2

Airways  ( Number of Passengers ) Seires
( In Thousand )
Month 1989 1990 1991 1992 1993 1964 1995
27 36 40 35 39 49 62
24 34 40 34 42 46 56
28 39 48 43 47 7 61
29 38 22 43 S0 59 58
28 34 44 39 38 54 56
22 23 28 34 30 ELS 46
21 25 29 31 30 42 48
21 27 20 32 37 38 47
24 28 31 29 43 38 47
26 34 35 30 42 50 §3
28 38 41 31 51 56 56
31 37 23 39 46 57 50

Central statistical Organization ( C.5.0)



Table A 1.3
Railways ( Freight Ton ) Series

( In Thousand )

Month 1989 1990 1991 1992 1993 1994 1995
Jan 165 208 203 220 210 238 249
Feb 169 185 190 207 223 231 200
Mar 175 208 197 200 260 235 211
Apr 131 159 177 170 200 209 182
May 146 146 201 177 185 212 192
Jun 131 149 175 177 184 196 185
Jul 125 152 158 184 199 181 182
Aug 121 157 154 147 190 210 193
Sep 107 124 141 178 175 207 191
Oct 123 139 157 188 195 21) 214
Nov 127 148 191 206 202 276 209
Dec 177 173 204 171 232 285 227

Source : Central Statistical Organization (C. 5 0.)

Table A 14
Inland Water Transport ( Freight Ton ) Series

(In Thousand )

Month 1989 1990 1991 1992 1993 1994 1995
Jan 194 237 221 230 272 276 289
Feb 170 224 206 228 251 265 270
Mar 198 261 228 259 308 297 306
Apr 195 220 213 235 277 234 281
May 190 219 228 234 276 287 281
Jun 180 211 212 233 283 268 250
Jul 200 219 201 242 262 242 278
Aug 233 216 210 217 232 240 250
Sep 200 190 202 225 2206 232 236
Oct 196 181 216 241 253 260 251
Nov 211 187 208 239 260 204 237
Dec¢ 227 191 218 267 269 252 l 249

Source:  Central Statistical Organization ( C.5.0 )




Table A 1.5

ANOVA Table for Airways ( Freight 1Lb) Series

Source 5.9 D.F M. S b . Ratio
Between months 1990882.3 11 180989.3 5.3
Between years 125813.4 6 20968.9 0.61
Error 2258731.2 66 34223.2
Total 4375426.9 83

Table A1.6

ANOVA Table for Airways ( No of Passengers ) Serics

Source S.S Dy M. 5 B, Ratio
Between months 3052.5 11 277.5 i3.3
Between years 3641.4 6 606.9 A
Error 1372.8 66 20.8

Total 8066.7 83




Table A 1.7

ANOVA Table For Ratlways ( Freight Ton ) Series

Source S.S D.F M. S I, Ratio
Between months 52311.6 11 4755.6 19.3
Between years 30693.6 6 5115.6 208
Error 16255 66 2406.3
Total 99261.0 83

Table A 1.8

ANOVA Table for Infand Water Transport ( Freight Ton ) Serics

Source S. S D.F M. S I Ratio
Between months 21807.5 11 1982.5 8.4
Between years 30991.8 6 5165.3 21.8
Error 15602.4 66 236.4

Total 68401.7 83




Table A S.1
Estimated Autocorrelations of Airways ( Freight Lb) Series

Otandard
Autocorrelations Error for

Row

030 -002 -002 -0.13 -0.19 -0.14 -009 -0.01 -0.11 -0.21 004 035 Q1091
021 011 008 016 -021 -015 -0.10 -0.11 -0.06 -0.13 -0.02 005 0.1¢03
014 022 023 010 -0.02 -015 -0.12 -013 -0.10 001 004 -001 01749
008 004 012 015 004 -009 -0.11 -012 -010 001 -002 001 01808
027 -023 009 -0.06 -0.08 001 -0.02 013 -001 -022 -0.08 036 0109
005 -004 015 -0.14 -008 000 004 -003 004 -012 004 -004 01435
0.00 007 009 -0.01 002 -0.13 004 -0.03 -0.06 006 007 -0.12 0.134U
011 -008 001 010 002 -008 -001 -D02 -006 010 -004 002 0O157%
032 008 004 -0.08 -002 002 003 019 -0.15 -022 -020 -017 01179
006 000 -0.01 -0.14 -015 000 000 -01% 008 -0.09 -004 -020  0.155]
009 017 006 009 012 -007 011 -001 -0.04 011 009 -0.02 01640
0.03 -008 -0.04 -0.07 -003 004 006 007 004 006 000 000 01663
038 -0.10 006 -0.13 002 002 -0.10 033 -0.18 -0.07 001 -014 01187
020 -0.03 007 -0.08 -0.12 011 004 -018 022 -0.14 013 008 01737
2010 025 -009 000 015 -025 020 -006 -0.11 011 006 010  0.192¥
0.10 -0.10  0.05 -0.06 -0.01 003 001 003 -0.04 006 004 003 01533




Table AS.2
Estimated Autocorrelationsof the Airways (Number of Passengers)Series

Jtandard
Lag k Autocorrelations Errar for
ROW

z 112 075 067 052 045 039 038 036 042 039 045 044 045 0109
13-24 038 030 021 017 017 015 013 00% 008 013 015 018  0.3009
25-36 016 012 004 -003 -006 -0.04 -007 -005 -006 -0.01 001 002 03032
37-48  -004 -005 -0.11 -012 -013 -0.15 -016 015 -017 -0.15 013 -0.11 03106
VZ1 1-12 -03%9 020 -0.18 -0.03 -0.15 004 -023 021 -0.21 017 -004 020 07098
13-24 004 002 -006 -0.10 -0.02 002 000 -00%8 -0.11 011 -0.04 (12 (1564
27-36 003 012 -0.09 -001 -012 0.2 -0.16 003 -009 006 000 017 01654
3743 <006 014 -0.11 -001 -002 -0.03 -006 (.03 -0.07 002 001 015 01704
Vlzzt 1-12 0.15 016 -0.04 -0.15 -00% 002 007 044 020 012 003 -042 01179
13-24  -005 -017 001 -002 012 003 008 -029 -018 -018 -016 =013 01866
25-36 -003 000 -003 -006 -016 -0.04 -0.17 -0.01 000 -001 001 G0l 01912

37-48  -0.02 002 -004 0.03 009 000 007 005 €04 003 005 Uue 09
z 12 -053 012 -004 -0.11 -0.01 002 -019 035 010 000 022 2049 01187
12304 0.29 -018 014 -012 015 -008 025 -02% 007 -0.01 007 -005 Q210
25-36 005 002 -002 006 -014 015 -0.17 010 001 -001 -012 003 02170
374y -006 007 -009 002 009 -00% 004 000 -001 -C02 001 002 02193




Table A5.3
Estimated AutocorrelationsofRailways ( Freight Ton ) Series

Lag k Autocorrelations E
Z  1[12 079 063 043 030 021 0.4 0.7 0.23 034 046 050 054 0109
13-24 045 033 020 011 006 -001 001 008 016 025 024 022 02797
25-36 014 008 -004 -0.13 -0.16 -0.15 010 -005 001 0.05 006 008 0.2841
37-48  -0.01 -0.11 -0.18 -0.24 -0.26 -0.25 020 -017 -013 -0.09 -0.10 -0.11  0.20%6
4 1-12 -001 010 -019 -0.10 -0.03 -028 -008 013 -006 -0.24 003 032 0709%
13-24° 007 007 -010 -012 008 -023 -0l4 006 -0.03 025 004 017 01530
27-36 -0.02 015 006 -017 -012 -0.0% -003 -004 0.01 009 007 020 01636
37-48  0.03 -0.02 -0.06 -008 -0.10 -0.09 003 000 -0.02 013 -002 020 01652
vz 1-12 042 0.09 -002 007 005 008 009 0.09 016 0609 -0.11 0629 01179
13-4 2003 004 011 0.15 017 -0.04 -0.09 -001 000 003 -0.08 -012 0.175¢
25-36. 001 010 001 -017 -0.12 -0.03 000 -0.03 -0.02 002 013 019 01823
37-48 006 -0.05 -0.01 005 000 010 006 -005 A0.09 <010 012 2012 01848
z I-12-022 =016 -0.21 011 -0.04 -0.01 -0.01 -0.07 015 DT 004 2037 011w
l 13-24 020 -005 003 -0.02 018 -0.09 -009 001 -005 0.13 000 -0.13 01715
25-36 -0.04 020 008 -0.13 -0.10 003 008 -0.04 000 001 005 014 01810
37-48 000 -0.13 0.00 005 -0.10 010 002 -002 -0.01 001 -006 -0.05 01848




Table AS54
Estimated Autocorrelations of Inland Water Transport ( Freight Ton) Scrics

Standard
Error for
Row

Lag k Autocorrelations

Z 112 049 037 039 028 024 021 016 018 018 023 026 028 01091
13-24 026 021 020 017 014 011 008 009 014 016 013 014 02076
25-36 015 006 006 004 -003 -004 -006 -008 -0.04 -004 -006 -0.05 02106
37-48 005 -0.09 -0.10 -0.14 -0.17 -0.17 -0.18 -0.18 -0.19 016 -0.15 016 02253

VZl 1-12 -039 -0.13 013 -008 -0.01 003 -008 000 -0.04 003 000 005 006K
13-24 001 -0.03 001 000 000 -001 -0.03 -005 002 006 -004 001 GI310
2736 0.09 -0.07 002 004 -005 000 001 -007 005 001 -002 001 01334
37448 0.05 -0.03 002 000 -0.03 001 -0.02 001 -003 0Ol 04 D02 D1341

VBZl 1-12 016 006 018 004 004 -002 -012 -00% -0.11 041G 005 -00% 01175
13-24  -0.13 -0.06 -0.07 -0.08 -0.03 -0.07 -008 -0.03 -004 GO1 -002 -0.02  O135%

25-36  0.00 -0.05 -0.02 002 -002 -002 -001 -0.03 008 003 001 007 0137

37448 0.09 006 004 010 007 009 003 003 -0.05 000 001 -005 01421

\7’V122t 1-12 -045 -0.12 015 -008 0.04 002 -007 007 -00S -003 006 -001 01187
13-24 006 0.05 -001 -0.04 005 -001 -004 003 -004 005 -001 -0.02 0.14%9

25-3¢  0.04 -005 -0.01 005 -003 000 003 -00% 009 000 -006 003 01513

37-48  0.03 -001 -004 005 -003 005 -001 -002 -004 002 004 000 01527




Table A 5.5
Estimated Partial Autocorrelation of V., z ~ Series of Airways ( Freight b))

. Estimated
Lagk Partial Autocorrelations ¢, Sandard

CITOr

1412 032 -0.11 -010 014 002 004 004 010 -016 0.15 -0.14 -0.02 :
1324 015 010 002 -020 005 010 001 -012 -010 012 -004 -021 U7

Table A S.6
Estimated Partial Autocorrelation of VV, z, Series of Airways (Number of Passengers )
. Fstimated
Lag k Partial Autocorrelations ¢, Standard
crror
112 -0.53 -0.15 -0.08 -0.23 -0.31 -021 -041 -006 0.12 -007 032 -019 01187

13-24  -002 -0.02 025 -009 -0.06 -014 003 018 002 004 011 -0.07

Table A 5.7
Estimated Partial Autocorrelation of VV ,z Series of Railways  ( Preight Ton )

Estimated
7~
)

Lagk Partial Autocorrelations ¢, Atandard

SO
SH R

1412 022 -0.22 -032 008 -0.17 -0.15 -0.10 -0.22 003 008 023 -020 1187
13-24 017 -0.03 -008 006 012 000 -013 -008 -007 017 00% -028

Table A S.8
Estimated Partial Autocorrelation of VVz Series of Inland Water Transoprt ( FreightTon )

Estimated

Lag k Partial Autocorrelations ¢, Standard

cIror

112 -045 023 -0.11 -003 005 023 001 -0.03 -012 -023 019 -020

1324 003 006 007 -0.09 007 -0.0%8 001 006 001 000 000 023 187




Table A 5.9
Sum of Squares Functions for Model Fitted to Airways ( Freight Lb) Series

6, S(8,) 6, S(0))
-0.99 108949448 -0.10 3007163
-0.95 8839497 -0.05 3086309
-0.90 7349793 0.00 3180857
-0.85 6238407 0.05 3291609
-0.80 5222093 0.10 3419676
-0.75 4440512 0.15 3566511
-0.70 3889766 0.20 3733983
-0.65 3513416 0.25 3924497
-0.60 3258435 0.30 4141181
-0.55 3086528 0.35 4388187
-0.50 2972266 0.40 4671124
-0.45 2899215 0.45 4997718
-0.40 2856876 0.50 5378769
-0.35 2838574 0.55 5829573
-0.34 2837395 0.60 6371998
-0.33 2836980 0.65 7037567
-0.32 2837307 0.70 7871960
-0.31 2839355 0.75 8941267
-0.30 2840106 0.80 10339155
-0.25 2858889 0.85 12189517
-0.20 2893417 0.90 14635944
-0.15 2942921 0.95 18179419
0.99 27090469




Table A S.10
Sum of Squares Functions for Model Fitted to Airways ( Number of Passengers ) Berics

¢, S(¢)) P, 3(é,)
0.99 5092.16 -0.15 4684.55
-0.95 4899.63 -0.10 4902.52
-0.90 4727.42 -0.05 5145.13
-0.85 4494.07 -0.00 5417.00
-0.80 4331.88 0.05 5713.93
0.85 4494.07 0.10 6039.00
-0.80 4331.88 0.15 6390.95
-0.75 4193.69 0.20 6770.68
-0.70 4088.68 0.25 7176.19
-0.65 4004.95 0.30 7609.88
-0.60 3953.72 0.35 8069.65
-0.55 3926.83 0.40 8559.32
-0.54 3924.70 0.45 9071.33
-0.53 3923.65 0.50 9613.00
-0.52 3923.68 0.55 10181.23
-0.51 3924.80 0.60 10776.92
-0.50 3927.00 0.65 11399.35
-0.45 3952.13 0.70 12049.08
-0.40 4008.52 0.75 12725.69
-0.35 4088.05 0.80 13429.48
-0.30 4198.28 0.85 14160.25
-0.25 4332.19 0.90 14918.12
-0.20 4496.28 0.99 16350.44




Sum of

Table A 511

Ton ) Serres

Squares Functions for Mode! Fitted to Ratlways ( Freight”
O, 5(8,) ®, S(®)
387536.68 0.15 42835.48
293663.65 0.20 41376.39
218575.40 0.25 40018.69
171881.76 0.30 38757.05
141839.03 0.35 37587.36
121708.54 0.40 36506.89
107595.10 0.45 35514.53
97222.36 0.50 34611.47
89241.14 0.55 33802.60
82838.57 0.60 33099.25
77515.94 0.65 32524.23
72961.21 0.70 32121.54
68974.92 0.71 32068.06
65426.50 0.72 32025.55
62228.10 0.73 31995.09
59318.70 0.74 31977.94
56654.49 0.75 31975.50
54202.80 0.76 31989.39
5193842 0.77 32021.48
49841.28 0.80 32498.96
47895.00 0.85 35713.82
46085.94 0.90 40985.92
44402.64 0.99 49161.54




Table A5.12
Sum of Squares Functions for Model Fitted to Inland Water Transport( Freight Ton ¥ Serte

RS

0, S(6)) 0, S(0,)

-0.99 2002770.51 0.15 19558.21
-0.95 315765.32 0.20 19181.24
-0.90 172013.68 0.25 18862.57
-0.85 114832.45 0.30 18603.66
-0.80 83495.00 0.35 18416.13
-0.75 64628.89 0.40 18306.06
-0.70 52742.14 041] 18294.03
-0.65 45001.91 0.42 18285.92
-0.60 37586.84 0.43 18281.92
-0.55 35674.29 0.44 18287.04
-0.50 32766.57 0.45 18286.50
-0.45 30504.58 0.50 18395.44
-0.40 28692.46 0.55 18638.98
-0.35 27196.83 0.60 19068.18
-0.30 25933.43 0.65 19746.22
-0.25 24844 .45 0.70 20729.97
-0.20 23892.52 0.75 22131.25
-0.15 23049.57 0.80 24094.27
-0.10 22297.62 0.85 26859.98
-0.08 21623.55 0.90 30829.94
-0.00 21018.00 0.95 36232.47
0.05 20474.37 0.99 51938.61
0.10 19988.58




Estimated Residual Values

~

Table AS.13

a, =0.7917 +w -0.33 a_ for Airways ( Freight Lb) Serjes

33.85
41.17
270.59
1255.29
209.25
210.95
-34.61
73.42
173.77
-1.34
41.44
324.32
-55.03
123.16
-379.64
165.72
-63.31
190.89
-61.99
-9.54
21785
28.89
-683.53

-163.43

-35.07
438.57
451.27
-168.92
111.74
-195.88
101.64
42.46
-64.01
105.12
6.31
-203.08
318.02
-63.95
209.10
480.00
-49.40
-162.70
68.69

-112.04
-413.053
-341.70
169.76
144.98
-81.584
296.01
-49.68
10.40

-95.62
-109.45
-7.88
151.60
-281.03
-167.26
41.20
-281.59
55.93
-31.46
111.38
-38.76

62.79




Table A 5.14

Estimated Residual Values 8 = 0.1509 -+ w, +0.53 w_ for Airways

( Number of Passengers ) Series

1.53 0.47 -4.41
-1.47 20.53 2.82
-4.06 -12.22 -2.18
-6.59 -2.78 6.47

0.35 1.83 -4.29
3.59 -2.12 -0.24
-0.94 -4.00 -8.88
2.94 -5.12 -11.83
4.12 -6.59 9.82
-2.94 23.35 3.89
-4.12 1.78 441
0.94 -2.36 5.18
4.06 -1.88 -1.94

-23.41 0.88 -7.59
12.75 -6.41 -8.18

8.75 -7.24 0.35
-3.635 1.41 7.59
-1.53 7.59 1.18
-0.53 12.18 1.94
-2.00 2.77 1.59
0.94 6.94 -6.00

-15.94 -8.76 -6.18
-0.01 -3.89 0.41
3.77




Estimated Residual Values a = 14225 +w+ 0.75a

Table A S5.15

. for Railways (Frejeht Top Series

6.00
-10.25
-3.25
25.25
16.00
-15.50
-13.25
-2.25
5.75
0.25
28.75
-30.75
-14.75
-7.69
-16.44
8.94
-5.00
14.38
14.06
-34.69
-30.34

48.31 -9
-5.81 16
5.56 -1
-71.06 -7
11.94 -16.
20.23 39.
31.67 4.
-23.30 -11.
31.67 52
-23.30 -12
-25.75 -59
9.78 10
18.55 -3
1.98 9
-9.77 O
5.64 3
-6.83 -U
11.70 11
-27.05 4
-1.82 10
-0.17




Estimated Residual Values

a, =0.6479+w+043a
(Freight Ton ) Series.

Table A 3.16

15.00
15.45
-31.35
-9.48
-2.08
-12.89
-41.54
-10.86
-9.67
-13.16
-17.66
12.41
3.33
-13.57
20.17
24.67
2.61
-17.88
4.31
19.85
31.54
-0.44

6.33
11.72
-3.96

-17.70

7.39

23.18
-24.03

5.67

4.44

7.91
21.40

2.20

-18.05
18.24

0.84

0.36

5.16

-24.78
-15.66
-20.73
2.09
9.90
-14.74
-4.34

for Inland Water Transpost




Table AS5.17
Estimated Autocorrelations of 8 for Airways (Freight Lb ) Series

: Estimated
Lag k} Autocorrelations r, (8) n

| standard error

l |
1-12 0.02 0.03 -0.08 -0.16 -0.05 0.03 0.03 0.17 -0.06 -0.14 -0.17 -0.16 |

13-24 }0;17 -0.01 0.13 -0.12 -0.09 0.01 0.02 -0.05 -0.08 -0.10 0.01 -0.23 ! o
| .

25-36 ]0.11‘ 0.21 0.02 0.16 0.07-0.09 0.10 -0.07 -0.05 0.10 0.06 0.00 |

37-48 :0.05 -0.12 -0.05 -0.08 0.05 -0.01 0.06 0.06 -0.02 0.05 -0.02 -().()3:

~.}
>

Table A S5.18
Estimated Autocorrelations of:'i‘ for Airways (Number of Passemngers ) Series

[

Autocorrelations r, () Estimated

]]
L k
ag | lstandard error

{
1-124-0.03 -0.07 -0.03 -0.26 -0.07 0.07 0.13 0.00 -0.10 -0.08 -0.08 -U.1¥|

13-24! 0.06 012 0.04 0.01 0.05-0.04 -0.03 011 0.01 -0.06 -0.01 -o.(m:
25-36[-0.02 -0.04 0.07 0.00 -0.11 0.07-0.10 0.06 0.05 0.03 0.04 -0.0%
37-4Jtﬂ-0.(16 0.05 -0.07 0.05 0.12-0.08 0.00 0.02 -0.07 -0.05 0.0] (msi

0.1187




Table A 5.19
Estimated Autocorrelations ofa for Airways (Freight Lb ) Series

I ; ~ ~
Lag K Autocorrelations r, (a) I;. tima
| stan _i

!
1-12 40.09 -0.18 -0.25 0.12 0.01 0.01 -0.10 -0.02 0.07 0.05 0.0] -0.04
13-24 :0.09 0.02 -0.07 -0.04 0.16 -0.04 -0.14 -0.06 011 0.13-0.15 -0,14
25-36 10.09 0.26 -0.04 -0.13 0.00 0.020.06 -0.16 -0.03 -0.04 0.0Y 11

37-48 }0.07 -0.11 -0.01 -0.01 -0.05 p.04 008 -0.02 -0.08 -0.02 0.06 -'l'i’l'

[
I
[
|
|
|'
[
|

Table A 5.20
Estimated Autocorrelations of 2 3 for Inland Water Transport  (Freight Ton ) Series

Autocorrelations r. (3
Lag k | A0

. .
| Estimaicd
IS‘IIUM;L-".,;T Ciiy

1-12) 0.07 -0.14 0.05 011 0.12 0.11 -0.15 -0.14 -0.07 -0.05 0 14 -().23:
13-24-0.15 0,02 0.03 -0.07 0.06 -0.13 0.04 0.12 -0.02 -0.01 0.11 -0.15" 0.1187
23-36] 0.09 0.04-0.17 0.03 -0.18 0.01 -0.01 -0.05 0.04 0.05 -0 04 0.18
37-48: 0.08 -0.13 0.11. 0.10 0.07 -0.09 -0.01 -0.02 0.10 0.06 0.03 -0.14:
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Figure B 1.5
Tier Chart for Airways ( Freight Lb ) Series
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Figure B 1.5 (Con'd)
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Figure B 1.6
Tier Chart for Amrways ( Number of Passengers ) Series
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Figure B 1.6 (Con'd)
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Figure B 1.7
Tier Chart for Railways ( Freight Ton) Sertes
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Iigure B 1.7(Con'd)
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Figure B 1.8
Tier Chart for Inland Water Transport ( Freight Ton ) Series
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Figure B 1.8 (Con'd)
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Figure B 5.17
Estimated Partial Autocorrelations for v 12 2 Series of Alrways ( Freight Lb)

Figure B 5.18
Estimated Parlial Autocorrelation for VVi2 71 Series of Ainmays ( Number of
Passengers)
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Figure B 5.18
Estimated Partial Autocorrelation for V%, z; Series of Railways ( Freight Ton)
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Figure B 5.20
Estimated Partial Autocorrelation for Vi, zy Series of Iniand VWater Transpor
{ Freight Ton)




Figure B 5.21
Sample Correlogram of %  for Ainuays { Freight Lb) Series

Figure B 5.22 )
Sample Correlogram of 3 for Airways (Number of Passengers) Series

Figure B 5.23
Sample Correlogram of & for Railvays ( Freight Ton ) Series
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Figure B5 . 24
Sample Correlogram of & for Inland Water Transporl (Freight Ton ) Series
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Abbreviations

AR = Autoregressive

MA = Moving average

ARM A = Auloregressive moving average
ARIMA ~ Autoregressive integrated moving average
SAR = Scasonal auloregressive

SMA = Seasonal moving average

SARMA ~ Scasonal auloregressive MovIng average
Act = Autocorrelation tunction

Pact - Partial autocorrelation function

AlC = Akake's Information Criterion

FPE = [Fmal Prediction Error

HQ = Hannan and Quinn

BIC = Baysian Information Criterion
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